

3. Consider the exponential distribution \(f(x|\theta) = \theta e^{-\theta x} \) where \(\theta > 0 \). As always, we have a random independent sample \(X_1, X_2, X_3, \ldots, X_n \). The mean of this distribution is \(\mu = 1/\theta \).

 (a) Find the maximum likelihood estimators of the mean \(\mu \) and of \(\theta \).

 (b) By appealing to a theorem, show that for large \(n \), the MLE for \(\theta \) is approximately normal, with mean \(\theta \) and variance \(\theta^2/n \).

4. Consider the geometric density \(f(x|p) = p(1-p)^x \) where \(x = 0, 1, 2, \ldots \). We have a random independent sample \(X_1, X_2, X_3, \ldots, X_n \). Find the maximum likelihood estimator of the mean and of \(p \).

5. Consider the uniform distribution on \([0, \theta]\). We have a random sample \(X_1, X_2, \ldots, X_n \).

 (a) Find the maximum likelihood estimator of \(\theta \). Hint: don’t use derivatives. Just try to maximize the likelihood given \(X_1, \ldots, X_n \).

 (b) Find the MLE of the mean \(\mu = \theta/2 \).

 (c) (566 only) Now suppose that we have the uniform distribution on \([\theta_1, \theta_2]\) with both \(\theta_1 \) and \(\theta_2 \) unknown. Find the MLE’s of \(\theta_1 \) and \(\theta_2 \) and of the mean \(\mu = (\theta_1 + \theta_2)/2 \).