Math 520a - Homework 2

1. Use Cauchy’s integral formula (for an analytic function or its derivatives) to evaluate
 (a) For the contour \(\gamma(t) = e^{it}, \ 0 \leq t \leq 2\pi \), the integral
 \[
 \int_{\gamma} \frac{e^{iz}}{z^2} \, dz
 \]
 (b) For the contour \(\gamma(t) = 1 + \frac{1}{2}e^{it}, \ 0 \leq t \leq 2\pi \), the integral
 \[
 \int_{\gamma} \frac{\ln(z)}{(z-1)^n} \, dz
 \]

Solution: I’ll just give answers for this one.
(a) \(-2\pi\)
(b) Integral is 0 for \(n = 1 \). For \(n > 1 \) it is \((-1)^n2\pi i/(n-1)\).

2. Let \(f(z) \) be an entire function such that there are constants \(C, D \) with
 \[
 |f(z)| \leq C + D|z|^n, \ \forall z
 \]
 Prove that \(f \) is a polynomial of degree at most \(n \).

Solution: Since \(f \) is entire it has a power series about the origin which converges for all \(z \).

\[
 f(z) = \sum_{k=0}^{\infty} a_k z^k
\]

The coefficients are given by \(a_k = f^{(k)}(0)/k! \). We will show that \(f^{(k)}(0) = 0 \) for \(k > n \). This implies \(a_k = 0 \) for \(k > n \) and so the power series is just a polynomial.

By considering a circle of radius \(R \), Cauchy’s inequality says

\[
|f^{(k)}(0)| \leq \frac{k!M_R}{R^k}
\]

where \(M_R \) is the sup of \(|f(z)| \) over the circle of radius \(R \). By the hypothesis, \(M_R \leq C + DR^n \). For \(k > n \), \((C + DR^n)/R^k \to 0 \) as \(R \to \infty \), and so \(f^{(k)}(0) = 0 \)
3. Let \(\Omega \) be a region (connected open set). Suppose that \(f \) and \(g \) are analytic functions on \(\Omega \) such that \(f(z)g(z) = 0 \) for all \(z \in \Omega \). Prove that at least one of \(f \) and \(g \) is identically zero on \(\Omega \).

Solution: We can find a point \(z_0 \in \Omega \) and a sequence \(z_n \in \Omega \) which converges to \(z_0 \) but never equals \(z_0 \). For every \(n \), \(f(z_n)g(z_n) = 0 \), and so either \(f(z_n) = 0 \) or \(g(z_n) = 0 \). So one of the sets \(\{ n : f(z_n) = 0 \} \) and \(\{ n : g(z_n) = 0 \} \) must be infinite. Assume the first one is infinite. Then there is a subsequence \(z_{n_k} \) with \(f(z_{n_k}) = 0 \). But this implies \(f \) is identically 0 on \(\Omega \).

4. Let \(f \) be entire and suppose that for every \(z_0 \), the power series expansion about \(z_0 \)

\[
 f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n
\]

has at least one coefficient \(a_n \) which is zero. (Note that the \(a_n \) depend on \(z_0 \).) Prove that \(f \) is a polynomial. This is problem 13 on p. 67 in the book. You can find a hint there.

Solution: Note that for the power series about \(z_0 \), \(a_n = 0 \) is equivalent to \(f^{(n)}(z_0) = 0 \). So the hypothesis says that for every \(z_0 \), there is an \(n \) for which \(f^{(n)}(z_0) = 0 \). Now let \(A_n = \{ z : |z| \leq 1, f^{(n)}(z_0) = 0 \} \). The union of the \(A_n \) is the unit disc and so is uncountable. So at least one \(A_n \) is uncountable (and hence infinite). Let \(m \) be such that \(A_m \) is infinite. Then there is a sequence \(z_l \) of distinct elements in \(A_m \). Since the closed unit disc is compact, it has a convergent subsequence. Since \(f^{(m)} \) vanishes on this subsequence, \(f^{(m)} \) is identically zero. So \(f \) is a polynomial.

5. Let \(D \) be an open disc. Suppose that \(f \) is continuous on \(\overline{D} \), analytic on \(D \) and that \(f \) never vanishes on \(\overline{D} \). Suppose also that \(|z| = 1 \Rightarrow |f(z)| = 1 \). Prove that \(f \) is constant. This is problem 15 on p. 67 in the book. You can find a hint there.

Solution: Discussed in class.

6. Let \(g(t) \) be continuous on \([0, \infty)\) with \(\int_0^\infty |g(t)| \, dt < \infty \). Define

\[
 f(z) = \int_0^\infty \cos(z + t) \, g(t) \, dt
\]

Prove that \(f(z) \) is entire. For complex \(z \), \(\cos(z) \) is defined to be \((e^{iz} + e^{-iz})/2 \). (Caution: for complex \(z \) we do not have \(|\cos(z)| \leq 1 \).)
Solution: Define

$$f_n(z) = \int_0^n \cos(z + t) g(t) \, dt$$

For a fixed t, $z \to \cos(z + t) g(t)$ is entire. Also, $\cos(z + t) g(t)$ is jointly continuous in t and z. By the theorem proved in class, f_n is entire. We will prove it converges uniformly on compact subsets of the plane to f. This will prove f is analytic.

Every compact subset of the plane is contained in the strip $|\text{Im}(z)| \leq M$ for some $M > 0$. So it suffices to prove uniform convergence on such a strip.

$$|f(z) - f_n(z)| = \left| \int_n^\infty \cos(z + t) g(t) \, dt \right|$$

For $z = z + iy$, on the strip we have

$$|\cos(z + t)| = \frac{1}{2} |e^{iz} + e^{-iz}| \leq \frac{1}{2} (|e^z| + |e^{-iz}|) = \frac{1}{2} (|e^{-y}| + |e^y|) \leq e^M$$

Hence

$$|f(z) - f_n(z)| \leq e^M \int_n^\infty |g(t)| \, dt$$

This bound holds for all z in the strip and the right side is independent of z and goes to 0 as $n \to \infty$ proving the needed uniform convergence.

7. Let Ω be open. Let f_n, f be analytic on Ω and suppose that for all circles C such that the circle and its interior are in Ω, f_n converges uniformly to f on C. Prove that f_n converges uniformly to f on all compact subsets of Ω.

Solution: Let K be a compact subset of Ω. For each $z \in K$ we can find $\epsilon_z > 0$ such that $B_{3\epsilon_z}(z) \subset \Omega$. (Note the factor of 3.) The discs $B_{\epsilon_z}(z)$ as z ranges over K are an open cover of K. (Note there is not a factor of 3 here.) So there is a finite subcover, i.e., there are $z_1, \ldots, z_n \in K$ such that

$$K \subset \bigcup_{j=1}^n B_{\epsilon_{z_j}}(z_j)$$

Since there are finite number of discs in the cover, it suffices to show the convergence is uniform on each disc. To simplify the notation, let $B_{\epsilon}(\zeta)$ be one of the discs.
We know $B_{3\epsilon}(\zeta) \subset \Omega$. Let C be the circle centered at ζ with radius 2ϵ. Then for $z \in B_{2\epsilon}(\zeta)$, we have

$$f(z) - f_n(z) = \frac{1}{2\pi i} \int_C \frac{f(w) - f_n(w)}{w - z} \, dw$$

If $z \in B_{\epsilon}(\zeta)$, we have $|w - z| \geq \epsilon$ for $w \in C$ and so

$$|f(z) - f_n(z)| \leq \frac{1}{2\pi} \frac{1}{\epsilon} |C| \|f - f_n\|_C$$

where $\|f - f_n\|_C$ is the sup of $|f(w) - f_n(w)|$ over $w \in C$ and $|C|$ is the length of C which is just $4\pi\epsilon$. So

$$|f(z) - f_n(z)| \leq 2\|f - f_n\|_C$$

Note that the right side is now independent of z and goes to zero as $n \to \infty$ since f_n converges uniformly to f on C. This completes the proof.