Math 520b - Homework 4

1. Let M be a compact Riemann surface of genus g. Let $P_1, \ldots, P_k \in M$ and let n_1, \ldots, n_k be positive integers. Find the dimension of the vector space of meromorphic forms whose poles are a subset of $\{P_1, \ldots, P_k\}$ and such that the order of the pole at P_j (if there is one) is at most n_j.

2. Prove that for the Riemann sphere two divisors U_1 and U_2 are equivalent if and only if $\deg(U_1) = \deg(U_2)$.

3. Let $\tau \in \mathbb{C}$ have positive imaginary part. Let L be the lattice $\mathbb{Z} + \mathbb{Z} \tau$. Let M be the Riemann surface which is the torus \mathbb{C}/L. The meromorphic functions on M are the meromorphic functions on \mathbb{C} which are doubly periodic with periods 1 and τ. For $p \in \mathbb{C}$ let γ_p be the closed contour which is the parallelogram with vertices $p, p + 1, p + 1 + \tau, p + \tau$ traversed in that order. Let f be a doubly periodic meromorphic function on \mathbb{C}. Show that for p such that γ_p does not contain any poles or zeroes of f, we have

$$\frac{1}{2\pi i} \int_{\gamma_p} \frac{h'(z)}{h(z)} dz \in L$$

4. Let M be the torus defined in the previous problem. Consider the divisor $U = P_1^{n_1} \cdots P_k^{n_k}$. We know that if it is principal, then $\deg(U) = 0$. Define

$$A(U) = \sum_{j=1}^{k} n_j P_j$$

(Addition of points in the torus M is addition in \mathbb{C} mod L.) Prove that if U is principal, then $A(U) = 0$. (We think of $A(U)$ as an element of the torus, so $A(U) = 0$ means it is 0 mod L.) This is “half” of Abel’s theorem for the torus which says that a divisor U is principal if and only if $\deg(U) = 0$ and $A(U) = 0$.

5. Let M be a compact Riemann surface. Let P_1, P_2, \ldots, P_n be distinct points in M. Prove that there is a meromorphic form such that for all j the form is non-zero at P_j and does not have a pole at P_j. Hint: Let Q be a point distinct from all the P_j. For large N what is the dimension of $L(Q^{-N})$ and of $L(Q^{-N}P_j)$?