Math 565b - Homework 4

1. Consider the semigroup

\[T(t)f(x) = f(x + t) \]

Find the generator of \(T(t) \). Take the Banach space to be \(C_0(\mathbb{R}) \).

2. Consider a generalized Poisson process with \(Y_k = \pm 1 \) with probability \(1/2 \). This is like a Poisson process in which instead of always going up by 1 when it jumps, the process either goes up or down by 1 (with equal probability) when it jumps. Recall that the generalized Poisson process \(X_t \) is defined by

\[X_t = \sum_{k=1}^{N_t} Y_k \]

where \(Y_k \) is iid and \(N_t \) is a Poisson process with rate \(\lambda \).

(a) Find the generator of the semigroup associated with this process.
(b) The theory we have developed shows that this generator must be a dissipative operator. Prove this directly using your answer to (a).

3. Let \(X_t \) be a Brownian motion with \(EX_t = \nu t \) and \(\text{var}(X_t) = \sigma^2 t \) where \(\nu \) and \(\sigma^2 \) are constants. (Note that you can obtain \(X_t \) by taking \(B_t \) to be a standard Brownian motion and letting \(X_t = \sigma^2 B_t + \mu t \).) Find the generator of the semigroup associated with this Markov process.

4. Consider a Gaussian process with mean zero and covariance \(C(s, t) \). It is defined for \(t \geq 0 \). Show that the process is a Markov process if and only if the covariance satisfies:

\[C(s, u)C(t, t) = C(s, t)C(t, u) \]

for \(0 \leq s < t < u \).

5. Let \(B_t \) be standard Brownian motion. Let \(T(t) \) be the associated semigroup and \(R_\lambda \) its resolvent. Show that the resolvent is an integral operator, i.e.,

\[R_\lambda f(x) = \int_{-\infty}^{\infty} r_\lambda(x, y)f(y)dy \]

and

\[r_\lambda(x, y) = \frac{1}{\sqrt{2\lambda}} \exp(-\sqrt{2\lambda}|x - y|) \]
6. Let \(P(t, x, dy) \) be a time homogeneous transition function. In particular, it satisfies the Chapman-Kolmogorov eq. Let \(\alpha \) be a probability measure on \(S \). For \(0 < t_1 < t_2 < \cdots < t_n \), define the finite dimension distribution of \(X_0, X_{t_1}, \cdots, X_{t_n} \) by

\[
P(X_0 \in B_0, X_{t_1} \in B_1, \cdots, X_{t_n} \in B_n) = \int_{B_0} \int_{B_1} \cdots \int_{B_{n-1}} P(t_n-t_{n-1}, x_{n-1}, B_n) P(t_{n-1}-t_{n-2}, x_{n-2}, dx_{n-1}) \cdots P(t_1, x_0, dx_1) \alpha(dx_0)
\]

where \(B_0, B_1, \cdots, B_n \) are measurable subsets of the state space \(S \). Use the Daniell-Kolmogorov extension theorem to show there is a stochastic process with these finite dimensional distributions. Note that we proved in class that for a Markov process with transition function \(P \), the finite dimensional distributions are given by the above equation.

7. Let \(X_t \) be a Markov process with transition function \(P(t, x, B) \). We let \(S^\Delta = S \cup \{\Delta\} \) with the topology defined as we did in class. So if \(S \) is compact, \(\Delta \) is an isolated point and if \(S \) is not compact, \(S^\Delta \) is the one point compactification of \(S \). Let \(A \subset S \) be a Borel set. Let

\[
\tau_A = \inf\{t : X_t \in A\} \quad (6)
\]

Take an initial distribution \(\alpha \) such that \(\alpha(A) = 1 \). Define a new process \(Y_t \) by \(Y_t = X_t \) for \(t < \tau_A \) and \(Y_t = \Delta \) for \(t \geq \tau_A \). Show \(Y_t \) is a Markov process. It is usually described as the process \(X_t \) killed when it exits \(A \).

8. For a topological space \(X \), \(D_X[0, \infty) \) denotes the space of functions from \([0, \infty) \) into \(X \) which are right continuous and have left hand limits at all \(t \). Let \(S \) be a locally compact Hausdorff space. Let \(D \) be a dense subset of \(C_0(S) \). Let \(x : [0, \infty) \to S \). Prove that \(x \in D_S[0, \infty) \) if and only if \(f(x) \in D_R[0, \infty) \) for all \(f \in D \).

9. Let \(S \) be a locally compact, Hausdorff space which is separable. Let \(D \subset C_0(S) \) be dense. Prove that \(D \) has a countable subset which is still dense in \(C_0(S) \).

10. Let \(X_t \) be a Markov process with transition function \(P(t, x, B) \). Let \(f : S \to \mathcal{R} \) be a bounded random variable. Prove \(t \to f(X_t) \) is right continuous from \([0, \infty) \) into \(L^1(\Omega, P) \). (We needed this to apply the Doob regularity thm.)