
Chapter 1

Introduction

A Monte Carlo method is a compuational method that uses random numbers to compute
(estimate) some quantity of interest. Very often the quantity we want to compute is the mean
of some random variable. Or we might want to compute some function of several means of
random variables, e.g., the ratio of two means. Or we might want to compute the distribution
of our random variable. Although Monte Carlo is a probabilistic method, it is often applied to
problems that do not have any randomness in them. A classic example of this is using Monte
Carlo to compute high dimensional integrals.

Monte Carlo methods may be divided into two types. In the first type we generate
independent samples of the random variable. This is usually called direct, simple or crude
Monte Carlo. The latter two terms are rather misleading. We will refer to these types of
methods as direct Monte Carlo. In this type of Monte carlo the samples Xi that we generate
are an i.i.d. sequence. So the strong law of large numbers tells us that the average of the Xi,
i.e., the sample mean 1

n

∑n
i=1

Xi, will converge to the mean of X as n → ∞. Furthermore the
central limit theorem tells us a lot about the error in our computation.

The second type of methods are Markov Chain Monte Carlo (MCMC) methods. These
methods construct a Markov Chain whose stationary distribution is the probability measure
we want to simulate. We then generate samples of the distribution by running the Markov
Chain. As the chain runs we compute the value Xn of our random variable at teach time step
n. The samples Xn are not independent, but there are theorems that tell us the sample mean
still converges to the mean of our random variable.

We give some examples.

1

Example - Integration: Suppose we want to compute a definite integral over an interval like

I =
∫ b

a
f(x) dx (1.1)

Let X be a random variable that is uniformly distributed on [a, b]. Then the expected value of
f(X) is

E[X] =
1

|b− a|
∫ b

a
f(x) dx (1.2)

So I = (b− a)E[X]. If we generate n independent sample of X, call them X1, X2, · · · , Xn,
then the law of large numbers says that

1

n

n∑
i=1

f(Xn) (1.3)

conveges to E[X]. The error in this method goes to zero with n as 1/
√
n. If f is smooth,

simple numerical integration methods like Simpson’s rule do much better - 1/n4 for Simpson.
However, the rate of convergence of such methods is worse in higher dimensions. In higher
dimension, Monte Carlo with its slow rate of convergence may actually be faster. And if the
integrand is not smooth Monte Carlo may be the best method, especially if simplicity is
important.

Example - more integration: Suppose we want to evaluate the integral
∫

10

0

e−x2

(1.4)

We could follow the example above. However, e−x2

is essentially zero on a large part of the
interval [0, 10]. So for most of our samples Xi, f(Xi) is essentially zero. This looks inefficent.
A large part of our computation time is spent just adding zero to our total. We can improve
the efficiency by a technique that is called importance sampling. We rewrite the integral we
want to compute as

∫
10

0

e−x2

ce−x
ce−x dx (1.5)

where the constant c is chosen so that
∫
10

0
ce−x dx = 1. Let g(x) = e−x2

/ce−x. If X is a
random variable with density ce−x, then the expected value E[g(X)] is the integral we want
to compute. As we will learn, it is quite easy to use uniform random numbers on [0, 1] to
generate samples of X with the desired density. (It is not so easy to generate samples with
density proportional to e−x2

on [0, 10].)

Example - yet more integration: Another example of the need for importance sampling is
the following. Suppose we want to compute a d-dimensional integral over some region D. If D

is a parallelepiped, it is easy to generate a random vector uniformly distributed over D. But if
D is a more complicated shape this can be quite difficult. One approach is to find a
parallelepiped R that contains D. We then generate random vectors that are uniformly
distributed on R, but we reject them when the vector is outside of D. How efficient this is
depends on the ratio of the volume of D to that of R. Even if it is very difficult to generate
uniform samples from D, it may be possible to find a domain D′ which contains D and whose
volume is not too much bigger than that of D. Then generating a uniform sample from D′

and rejecting it if it is not in D can be a much more effecient method that generating a
uniform sample from a parallelepiped that contains D.

Example - shortest path in a network: By a network we mean a collection of nodes and
a collection of edges that connect two nodes. (Given two nodes there need not be an edge
between them). For each edge there is a random variable that give the time it takes to
traverse that edge. There random variables are taken to be independent. We fix a starting
node and an ending node in the graph. The random variable we want to study is the
minimum total time it takes to get from the starting node to the ending node. By minimum
we mean the minimum over all possible paths in the network from the starting node to the
ending node. For very small networks you work out the expected value of this random
variable. But this analytic approach becomes intractable for every modest size networks. The
Monte Carlo approach is to generate a bunch of samples of the network and for each sample
network compute the minimum transit time. (This is easier said than done.) The average of
these minima over the samples is then our estimate for the expected value we want.

Example - network connectivity or reliability We now consider a network but now it is
random in a different way. We fix the nodes in the network. For each possible edge e, there is
a parameter pe ∈ [0, 1]. We include the edge in the graph with probability pe. The edges are
independent. Now we are interested in the probability that there is some path that connects
the starting and ending nodes. Probabilties can be thought of as expected values and the
strong law still provides the theoretical basis for a direct MC simulation. We can
approximately compute the probability by generating a bunch of samples of the network and
for each sample checking if the starting and ending nodes are connected. Our estimate for the
probability of a connection is the number of samples that have a connection divided by the
total number of samples.

Example - network connectivity with dependence In the previous example, if we let Ee

be the event that the graph contains edge e, then these events are independent. In this
example we again we fix the nodes in the network and make the edge configuration random.
However, now the edges are not independent. There are many models that do this. Here is a
relatively simple one. Let se be 0 if the edge e is not present, 1 if it is. So the graph is
specified by the set of random variables se. Let s denote the collection {se}. We take the

probability density to be

P (s) =
1

Z
exp(−

∑
e

cese +
∑
e,f

ce,fsesf) (1.6)

where ce and ce,f are parameters. The sum of pairs of edges e, f is only over e 6= f . The
constant Z is determined by the requirement that this must be a probability measure. Even
though the probability measure is quite explicit, there is no practical way to directly sample
from it. In particular, computing Z is not feasible unless the number of nodes is small. But
we can generate dependent samples of this distribution using a Markov Chain. Possible states
are the possible edge configurations. If we are in state s the chain can transition to a new
state s′ which differs from s in only one edge. In other words, the transitions consist of either
deleting an edge that is there or adding an edge that is not present. If we choose the
transition probabilities for these transitions appropriately, the stationary distribution of the
Markov chain will be P . So we can compute the probability that the starting and ending
nodes are connected by running the chain.

Example - self-avoiding walks To be concrete we describe this in two dimensions on the
square lattice. An N -step self-avoiding walk (SAW) is a nearest neighbor walk on the square
lattice that does not visit a site more than once. We take all the N -step SAW’s that start at
the origin and put the uniform probability measure on this finite set. This is a really simple
(to define) probability measure, but the number of such walks grows exponentially with N .
So for large values of N there is no practical way to generate samples. We have to use a
MCMC method.

Overview of the topics to be covered

Chapter 2 will introduce the basic idea of direct Monte Carlo and how one estimates the error
involved. All Monte Carlo simulations require a source of randomness. Usually the starting
point for this randomness is a pseudo-random number generator that produces numbers in
[0, 1] that look like they are uniformly distributed on the interval and independent. In chapter
3 we will look at the general structure of such generators and how one tests them. In chapter
4 we will study how you can use random numbers that are uniformly distributed on [0, 1] to
generate samples of a random variable with either a continuous or discrete distribution.

For all Monte Carlo methods the error in our estimate of the quantity we want to compute is
of order σ/

√
n. In direct Monte Carlo the constant σ is just the standard deviation of the

random variable whose mean we are computing. For MCMC σ is more involved. Obviously
we can improve the estimate by increasing n, i.e., generating a larger number of samples. One
can also attempt to reduce σ. This is known as variance reduction. We study some techniques
for variance reduction in chapter 6. An important such technique that we touched on on some
of the examples is importance sampling. All of chapter 7 is devoted to this topic.

In chapter 8 we will give a crash course on Markov chains, including the central idea of

MCMC. Chapter 9 will study some particular MCMC methods - the Gibbs sampler and the
Metropolis-Hastings algorithm. In Chapter 10 we will look in more detail at the statistical
analysis of what comes out of our Monte Carlo simulation. Further topics may include
stochastic optimization, rare event simulation, perfect sampling, simulating annealing and
who knows what.

