
Chapter 10

Optimization

In this chapter we consider a very different kind of problem. Until now our prototypical
problem is to compute the expected value of some random variable. We now consider
minimization problems. For example we might have a purely non-random problem: find the
mininum of some function H(x) where x ranges over X, and find the minimizer. Or we might
want to minimize some function which is the mean of some random variable.

10.1 Simulated annealing

We consider the problem of minimizing H(x), a non-random problem a priori. We will look at
simulated annealing which is especially useful in situations where H(x) has local minima
which cause many of the standard minimization methods like steepest descent to get “stuck.”
Explain the name.

The basic idea is to study the probability measure

1

Z
e−βH(x) (10.1)

on X and let β → ∞. In this limit this probability measure should be concentrated on the
minimizing x or x’s. If we just set β to a large value and pick an initial state at random, then
the algorithm can get stuck near a local minimum near this initial value. The key idea behind
simulated annealing is to start with a small value of β and then slowly increase β as we run
the MCMC algorithm. In physics, β is propotional to the inverse of the temperature. So
letting β go to infinity means the temperature goes to zero. So this is often called “cooling.”

One thing we need to specify for the algorithm is how fast we increase β. A standard choice is
to let β = ρn where n is the time in the MC simulation and ρ is a parameter that is just

1

slightly bigger than 1. There is no obvious way to choose ρ. One should try different values
and diferent choices of the initial condition. One can then compare the final state for all the
MCMC runs and take the one with the smallest H.

So the algorithm looks like this:

1. Pick an initial state X0, an inital β = β0, and a cooling rate ρ.

2. For i = 1, · · · , N , let βi = ρβi+1 and use some MCMC algorithm with βi to generate the
next state Xi.

3. The final state XN is our approximation to the minimizer.

We could also compute H(Xi) at each time step and keep track of which Xi is best so far. It
is possible that along the way we get a state Xi which is better than the final XN . If it is
expensive to compute H() this may not be worth doing.

Example: We start with a trivial example that illustrates how the method avoids getting
stuck in local minima.

H(x) = sin2(πx) + αx2 (10.2)

where α > 0 is a parameter. Obviously the minimum is at x = 0, and there are local minima
at the integers. If α is small some of these local minima are very close to the true minima. In
our simulations we take α = 0.1. With this value of α the local minima near 0 are pretty close
to the global minima.

We use Metropolis-Hastings with a proposal distribution that is just uniform on
[Xn − ǫ,Xn + ǫ]. We take ǫ = 0.2 and X0 = 10.. We start with β0 = 0.1 and raise β by the
rule βn = ρβn−1 where we will try several different ρ. We consider three different choices of ρ.
For each choice we run four simulations. The simulations are run until β reaches 100. Note
that this correpsonds to very different numbers of time steps. We use a logarithmic scale on
the horizontal axis in the plots. Since log(β) = n log(ρ) this is a linear scale for the number of
Monte Carlo steps.

In the first figure, figure 10.1, we use ρ = 1.005. The cooling is too rapid in these simulations
and so the chain gets stuck in local minima that are not the global minima.

In the second figure, figure 10.2, we run four simulations with ρ = 1.0001. This does better
than the previous simulation. One of the four simulations finds the global min while the other
three get stuck in an adjacent min.

In the third figure, figure 10.3, we take with ρ = 1.0000001. Three of the four runs find the
global min, but one still gets stuck in a local min.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0.1 1 10 100 1000

X
_n

beta

Sim anneal: rho=1.005, x0=10, epsilon=0.2

Figure 10.1: Simulated annealing ρ = 1.005.

-10

-5

 0

 5

 10

 15

 20

 0.1 1 10 100

X
_n

beta

rho=1.0001

"xna"
"xnb"
"xnc"
"xnd"

Figure 10.2: Simulated annealing ρ = 1.0001.

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0.1 1 10 100

X
_n

beta

rho=1.0000001

Figure 10.3: Simulated annealing ρ = 1.0000001.

Example: Simulated annealing can be used for discrete problems as well. Here is a famous
example - the travelling salesperson problem. We have n cities labelled 1, 2, · · · , n. The “cost”
of travelling from i to j is c(i, j). We assume this is symmetric. The salesperson must start in
some city and make a circuit that visits every city exactly once, ending back in the starting
city. We call this a tour. So a tour is a permuation π of 1, 2, · · · , n. We start in π(1), go to
π(2), then to π(3), and so on to π(n) and finally back to π(1). The cost of the tour is

H(π) =
n−1∑

i=1

c(π(i), π(i+ 1)) + c(π(n), π(1)) (10.3)

We want to find the tour that minimizes this cost.

We can use simulated annealing with the Metropolis Hastings algorithm. We need a proposal
distribution. Here is one. Let π be the current tour. We pick two distinct cities i, j uniformly
at random. We interchange these two cities and reverse the original tour between i and j. Do
example.

Example: We are designing integrated circuit chips. We have a very large number of
“circuits”. There are too many to get them all onto one chip. We have to use two chips.
Certain circuits need to be connected to other circuits. These connections are “expensive” is
the two circuits are on different chips. So we want to decide how to put the circuits on the
two chips to minimize the number of connections that must be made between the two chips.
Let m be the number of circuits. Let aij equal 1 if there has to be a connection between
circuits i and j, and equal 0 if no connection is needed. It is convenient to encode the board
that circuit i is on with a variable that takes on the values −1 and 1. Call the boards A and
B. We let xi = 1 if circuit i is on board A and xi = −1 if circuit i is on board B. Note that
|xi − xj| is 1 if the two circuits are on different boards and |xi − xj| is 0 if the two circuits are
on the same board. So the total number of connections needed between the two boards is

1

2

∑

i,j

ai,j|xi − xj| (10.4)

(We set aii = 0.) We want to choose xi to minimize this quantity. This problem has a trivail
solution - put all the circuits on the same board. We need to incorporate the constraint that
this is not allowed. Note that |

∑
i xi| gives the difference in the number of circuits on the two

boards. We don’t need this to be exactly zero, but it should not be two large. One model
would be to add a constraint that this quantity is at most ?? Another approach is to add a
penalty term to the function we want to minimize:

1

2

∑

i,j

ai,j|xi − xj|+ α[
m∑

i=1

xi]
2 (10.5)

where α is a parameter. There is no obvious choice for α. Say something about how α should
be chosen.

There are two MCMC algorithms that can be easily implemented. We could use
Metropolis-Hastings. The proposal distribution is to pick a circuit i at random (uniformly).
Then we change xi to −xi. The other algorithm would be a Gibbs sampler. Note that the
“dimension” is the number of circuits. Explain how each step of the MCMC only involves
local computations.

10.2 Estimating derivative

We recall the network example from Kroese. The times Ti are independent and uniformly
distributed but with different ranges: Ti uniform on [0, θi]. Let U1, U2, U3, U4, U5 be
independent, uniform on [0, 1]. Then we can let Ti = θiUi. The random variable we want to
compute the mean of is the minimum over all paths from A to B of the total time to traverse
that path.

��
��
��

��
��
��

��
��
��

��
��
��A B

T T

T T

1 4

2 5

T
3

Figure 10.4: Network example. We seek the quickest path from A to B.

In the first figure we take
θ2 = 2,
θ3 = 3,
θ4 = 1,
θ5 = 2
and plot the mininum as a function of θ1 using 106 samples. Two methods are used. For one
we use different random numbers to generate the 106 samples for every choice of θ1. For the
other we use the same random numbers for different θ1. The figure clearly shows that using
“common” random numbers produces a much smoother curve. We should emphasize that the
values of the min computed using the common random numbers are not any more accurate

than those computed using independent random numbers. It is just that the error go in the
same direction.

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

Min as function of theta[1], 10^6 samples

Common random numbers

Independent random numbers

Figure 10.5: Network example. Plot of minimum as function of theta[1] using inde-
pendent random numbers and common random numbers.

In figure (10.6) we compute a central difference approximation at θ1 = 1. We plot the
approximation as a function of δ. The independent plots use independent samples of the
random numbers. Two plots are shown, one using 106 samples, one with 107 samples. The
other plot uses common random numbers. Clearly the common random number approach
works much better. Starting around δ = 0.1 the common random number curve starts to
bend upwards, reflecting the error coming from the use of the central difference
approximation. In these simulations we generate the random Ti by generating U1, · · · , U5

uniformly in [0, 1]. Then we set Ti = θiUi.

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.0001 0.001 0.01 0.1
delta

Derivative w.r.t. theta[1] (central difference)

Independent 10^6 samples
Independent 10^7 samples

Common 10^6 samples

Figure 10.6: Network example. Plot of central difference approximation of derivative
of minimum with respect to theta[1] using independent random numbers and common
random numbers.

In figure (10.7) we continue to compute a central difference approximation to the derivative.
The red and green plots are as in the previous figure. For the green plot we generate the Ti in
a different way. We generate Ti using acceptance-rejection as follows. For each i we generate a
random number in [0, 5] and accept it when it is in [0, θi]. We use common random numbers
in the sense that we reset the random number generator to the original seed ...

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.0001 0.001 0.01 0.1

Derivative wrt theta[1] (Central difference) - accept/reject

Common 10^6 samples
Independent 10^6 samples

Common numbers with accept/reject

Figure 10.7: Network example. Plot of central difference approximation of deriva-
tive of minimum with respect to theta[1] using independent random numbers, good
common random numbers and common numbers using accept/reject.

Finally in figure (10.8) we attempt to fix the accept-rejection approach. The idea is that
common random numbers do not work well here since the number of attempts needed to
accept can be different for θ1 − δ/2 and θ1 + δ/2. So we always generate 100 random numbers
for each acceptance-rejection. Hopefully this keeps the common random numbers in sync.
However, the result show in the figure is not really any better than the acceptance-rejection in
figure (10.7).

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.0001 0.001 0.01 0.1

Derivative wrt theta[1] (Central difference) - accept/reject - ’fixed’

Common, 10^6 samples
Independent, 10^6 samples

Common with modified accept/reject

Figure 10.8: Network example. Plot of central difference approximation of deriva-
tive of minimum with respect to theta[1] using independent random numbers,good
common random numbers and attemp to fix accept/reject.

10.3 Stochastic gradient descent

