
Chapter 11

Further topics

11.1 Computing the distribution - CDF’s

Until now we have focused on computing the mean µ = E[X] of the RV X. Often we want to
know the distribution of the RV. Both direct Monte Carlo and MCMC generates samples of
X, and so give us information on the distribution. Most of this section will consider the case
where X is a real-valued random variable, not a random vector. We briefly consider random
vectors at the end of this section.

In this section we are only concerned with a non-parametric estimation of the density f(x).
Another approach would be a parametric approach in which we assume that f(x) belongs to
some multi-parameter family of distributions (normal, gamma, ...) and then estimate the
parameters.

We can get a quick look at the density function f(x) by plotting a histogram of our sample of
X. We normalize the histogram so that the area of a rectangle is equal to the fraction of
samples that fall in that bin. So the total area in the histogram is 1. Then the histogram is
an approximation to f(x). The histogram is easy and great for some purposes. The obvious
drawbacks: it does not give a smooth function as the estimate of the density, it depends on
the bin width chosen and on where we start the first bin. The dependence on the bin width is
very similar to the dependence of kernel density estimation on the bandwidth which we will
look at in some detail later.

Another approach is to compute the cumulative distribution function (CDF):

F (t) = P (X ≤ t) (11.1)

Given a sample X1, X2, · · · , XN , the natural estimator for the CDF is the empirical CDF

1

defined by

F̂N(t) =
1

N

N
∑

i=1

1Xi≤t (11.2)

Note that F (t) = E[1X≤t], so we can think of computing the CDF as computing the means of
the one parameter family of RV’s 1X≤t. The usual estimator for a mean is the sample mean.

For the RV 1X≤t, the sample is 1X1≤t, 1X2≤t, · · · , 1XN≤t, so this sample mean is just F̂N(t). In

particular we can estimate the variance of F̂N(t) and put error bars on it.

Note that for a fixed t, 1X≤t is a Bernoulli trial. It is 1 with probability F (t) and 0 with
probability 1− F (t). If we are doing direct Monte Carlo, then the samples are independent
and so the variance of F̂ (t) for N samples is

var(F̂N(t)) =
σ2

N
(11.3)

where σ2 is the variance of 1X≤t. We can estimate this variance by the sample variance of
1X1≤t, 1X2≤t, · · · , 1XN≤t. Note that since 1X≤t only takes on the values 0 and 1, a trivial
calculation shows the variance is F (t)[1− F (t)]. So we can also estimate the variance σ2 by
F̂N(t)[1− F̂N(t)]. A little calculation shows this is the same as using the sample variance up
to a factor of N/(N − 1).

Assume that F (t) is continuous and strictly increasing (on the range of X.) Recall that if we
let Ui = F (Xi), then the Ui are i.i.d. with uniform distribution on [0, 1]. Let

ĜN(u) =
1

N

N
∑

i=1

1Ui≤u (11.4)

This is empirical CDF for the Ui and is sometimes called the reduced empirical CDF for the
Xi. Note that it does not depend on F . Note that the CDF of a uniform random variable U
on [0, 1] is just G(u) = P (U ≤ u) = u. The Kolmogorov-Smirnov statistic is

DN = sup
t

|F̂N(t)− F (t)| = sup
u

|ĜN(u)− u| (11.5)

We collect some facts in the following propostion

Proposition 1 If the samples come from a direct Monte Carlo then

1. NF̂N(t) has a binomial distribution with p = F (t). The central limit theorem implies

that for a fixed t,
√
N(F̂N(t)− F (t)) converges in distribution to a normal distribution

with mean zero and variance F (t)(1− F (t)).

2. The law of large numbers immediately implies that for each t, the random variables

F̂N(t) converge almost surely to F (t). The Glivenko-Cantelli theorem gives a much

stronger result. It says that with probability one, the convergence is uniform in t.

3. For x > 0

lim
N→∞

P (
√
NDN ≤ x) =

∞
∑

k=−∞
(−1)ke−2(kx)2 (11.6)

If our samples come from an MCMC, then the samples are not independent. It is still true
that F̂N(t) is the sample mean of 1X≤t. So we can use the techniques for error bars for

MCMC (e.g., batched means) to put error bars on F̂N(t).

11.2 Computing the distribution - Kernel density

estimation

We follow chapter 8 of the Handbook.

Given a sample X1, X2, · · · , XN we want an estimator of the density f(x). The crude idea is
to put mass 1/N at each Xi and then smear it out a little to get a smooth function. More
precisely, we take a symmetric function K(x) which is non-negative and has integral 1. This
function is called the kernel density. It is helpful to think of the “spread” of this function
being of order 1. We also have a parameter h > 0, called the bandwidth. The function
1
h
K((x− c)/h) has integral 1, is centered at c and has width of order h. The kernel density

estimator is then

f̂(x, h) =
1

N

N
∑

i=1

1

h
K(

x−Xi

h
) (11.7)

We have to choose both the kernel density and the bandwidth. The choice of the kernel
density is not so crucial and a natural choice for the kernel density is the standard normal
density. With this choice

f̂(x, h) =
1

N

N
∑

i=1

φ(x,Xi, h) (11.8)

where

φ(x, µ, h) =
1

h
√
2π

exp(−(x− µ)2

2h2
) (11.9)

The choice of the bandwidth is the crucial choice.

We need a criterion for the optimal choice of the bandwidth. A widely studied choice is the
mean integrated square error (MISE):

MISE(h) = E
∫

[f̂(x, h)− f(x)]2 dx (11.10)

Another choice would be

E
∫

|f̂(x, h)− f(x)| dx (11.11)

The MISE has the advantage that we can compute things for it. A straightforward
computation shows

MISE(h) =
∫

[Ef̂(x, h)− f(x)]2 dx+
∫

V ar(f̂(x, h)) dx (11.12)

In the first term, Ef̂(x, h)− f(x) is the pointwise bias in the estimator. In the second term
the integrand is a pointwise variance of the estimator.

We expect that the optimal h should go to zero as N → ∞, and we also expect it goes to zero
more slowly than 1/N . One might expect that it goes like Np for some p between 0 and 1, but
it is not obvious what p should be. We will find an approximation to MISE(h) for small h.

For the first term in (11.12) we first use the fact that f̂(x, h) is a sum of identically
distributed terms. So

E[f̂(x, h)]− f(x) = E[φ(x,X, h)]− f(x) (11.13)

=
1

h
√
2π

∫

e−(x−u)2/2h2

f(u) du− f(x) (11.14)

=
1

h
√
2π

∫

e−(x−u)2/2h2

[f(u)− f(x)] du (11.15)

(11.16)

In the integral u is close to x so we do a Taylor expansion:

1

h
√
2π

∫

e−(x−u)2/2t[f(u)− f(x)] du (11.17)

≈ 1

h
√
2π

∫

e−(x−u)2/2h2

[f ′(x)(u− x) +
1

2
f ′′(x)(u− x)2] du (11.18)

=
1

2
f ′′(x)h2 (11.19)

Squaring this and integrating over x gives 1
4
h4||f ′′||22. where

||f ′′||22 =
∫

(f ′′(x))2 dx (11.20)

For the second term in (11.12) we use the fact that f̂(x, h) is a sum of i.i.d. terms. So

V ar(f̂(x, h)) =
1

N
V ar(φ(x,X, h)) (11.21)

To compute V ar(φ(x,X, h)) we first compute the second moment:

1

h22π

∫

exp(−(x− u)2

h2
) f(u) du (11.22)

We then need to integrate this over x. The result is 1
h2

√
π
. Next we compute the first moment:

1

h
√
2π

∫

exp(−(x− u)2

2h2
) f(u) du (11.23)

We must square this and then integrate the result over x:

1

h22π

∫

dx

[

∫

exp(−(x− u)2

2h2
)f(u)du

]2

(11.24)

Do the x integral first and we see that it will give approximately h1|u−v|≤ch. This leads to the
term being of order 1. Note that the second moment was proportional to 1/h which is large.
So the term from the first moment squared is neglible compared to the second moment term.
So the second term in (11.12) becomes 1

h2
√
π
.

Thus for small h we have

MISE(h) ≈ 1

4
h4||f ′′||22 +

1

2Nh
√
π

(11.25)

Minimizing this as a function of h we find the optimal choice of bandwidth is

h∗ =

(

1

2N
√
π||f ′′||22

)1/5

(11.26)

Of course the problem with the above is that we need ||f ′′||22 when f is precisely the function
we are trying to estimate. A crude approach is the Gaussian rule of thumb. We pretend like f
has a normal distribution with mean µ̂ and variance σ̂2. The computation of ||f ′′||22 for a
normal density is straightforward but a bit tedious. Obviously it does not depend on the
mean of the normal. We will argue that the dependence on the standard deviation σ must be
of the form cσ−5. Let fσ,µ(x) be the density of the normal with mean µ and variance σ2. Then

fσ,µ(x) =
1

σ
f1,0(

x− µ

σ
) (11.27)

So

f ′′
σ,µ(x) =

1

σ3
f ′′
1,0(

x− µ

σ
) (11.28)

So

||f ′′
µ,σ||22 =

1

σ6

∫

[f ′′
1,0(

x− µ

σ
)]2 dx (11.29)

=
1

σ5

∫

[f ′′
1,0(u)]

2 du (11.30)

With a bit of work (which we skip) one can compute the last integral. The result is that the
Gaussian rule of thumb gives the following choice of bandwidth:

hG =
(

4

3N

)1/5

σ̂ ≈ 1.06σ̂N−1/5 (11.31)

In the figures we show some results of kernel density estimation. The distribution is a mixture
of two normals. Each normal has variance 1. They are centered at ±c with c = 2 in the first
four figures and c = 10 in the last figure. The mixture is given by taking the normal at −c
with probabiliity 1/3 and the normal at +c with probability 2/3. In all the cases we used
10, 000 samples.

In each figure we estimate the variance of the distribution using the sample variance. We then
use the Gaussian rule of thumb to compute the hG. This is labelled “optimal” in the figures.
We also do kernel density estimation with
h = hG/16, hG/8, hG/4, hG/2, hG ∗ 2, hG ∗ 4, hG ∗ 8, hG ∗ 16.

Figure 11.1 uses values of hG/16 and hG/8. The estimated f̂ follows f pretty well but with
significant fluctuation.

Figure 11.2 uses values of hG/4 and hG/2. There values do well. In fact, hG/2 does better
than hG, shown in the next figure.

Figure 11.3 uses values of hG and 2hG. The value 2hG does rather poorly, and even the
optimal value of hG is significanty different from the true f .

Figure 11.4 uses values of 4hG and 8hG. These values are way too large. The estimated f
does not even resemble the true f .

In figure 11.5 the centers of the two normals are quite far apart, ±10. The figure shows the
kernel density estimation with the optimal choice of h from the Gaussian rule of thumb and
the estimator with h equal to the optimal value divided by 8. Clearly the latter does much
better. The Gaussian rule of thumb fails badly here. Note that as we move the centers of the
two Gaussians apart the variance grows, so the Gaussian rule of thumb for the optimal h
increases. But the optimal h should be independent of the separation of the two Gaussians.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-4 -2 0 2 4

exact
optimal/16
optimal/8

Figure 11.1:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-4 -2 0 2 4

exact
optimal/4
optimal/2

Figure 11.2:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-4 -2 0 2 4

exact
optimal

optimal*2

Figure 11.3:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-4 -2 0 2 4

exact
optimal*4
optimal*8

Figure 11.4:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-10 -5 0 5 10

exact
optimal/8

optimal

Figure 11.5:

We now consider multivariate kernel density estimation, i.e., estimating the density function
for a random vector with dimension d. The obvious generalization of the estimator is

f̂(x, h) =
1

N

N
∑

i=1

1

hd
K(

x−Xi

h
) (11.32)

where K(x) is now a non-negative function on Rd with integral 1.

There are some new issues in the multi-variate case. The different components of X may have
vastly different scales. The kernel function needs to take this into account. This problem can
occur in a more subtle way. Consider a two dimensional distribution in which the support of
the density is a long narrow ellipsoid at an angle of 45 degrees with respect to the coordinates
axes.

The problem of the components living on different scales can be dealt with by “pre-scaling.”
We rescale each component of the data so that they are on roughly the same scale. Then we
do the kernel density estimation and then we rescale the resulting estimator.

The more subtle problem can be dealt with by “pre-whitening.” Note that the covariance
matrix of the data is far from the identity. We find a linear transformation of the data so that
the covariance matrix of the new data is approximately the identity.

One possible multivariate kernel is to use a product form.

K(x,X, h) =
d
∏

j=1

1

hj

k(
xj −Xj

hj

) (11.33)

where k(x) is a univariate kernel density. We can use a different hj for each direction to
account for different scale for the different directions. The hj can be found as in the 1-d case.

11.3 Sequential monte carlo

We follow section 14.1 of the Handbook. For rigorous proof see the article “Particle Filters -
A Theoretical Perspective” in Sequential Monte Carlo Methods in Practice, A. Doucet et al.
(eds.).

11.3.1 Review of weighted importance sampling

We first review some things.

We want to compute µ = E[f(~X)]. Let p(~X) be the density of ~X. We cannot sample from

p(~X). But we can sample from q(~X) which is close to p in some sense. The importance

sampling algorithm is as follows. Generate samples ~X1, · · · , ~Xn according to the distribution
q(x). Then the estimator for µ is

µ̂q =
1

n

n
∑

i=1

f(~Xi)p(~Xi)

q(~Xi)
(11.34)

We can think of this importance sampling Monte Carlo algorithm as just ordinary Monte
Carlo applied to Eq[f(~X)p(~X)/q(~X)]. µ̂q is an unbaised estimator of µ, i.e., Eqµ̂q = µ, and it
converges to µ with probability one.

Suppose p(x) = cpp0(x) where p0(x) is known, but cp is unknown. And suppose we can sample
from q(x), but q(x) = cqq0(x) where q0(x) is known and cq is unknown. Then we can still do
self-normalized or weighted importance sampling. The key observation is

∫

f(x)p(x)dx =
Eq[f(x)w(x)]

Eq[w(x)]
(11.35)

where w(x) = p0(x)/q0(x) is a known function.

The self-normalized importance sampling algorithm is as follows. We generate samples
~X1, · · · , ~Xn according to the distribution q(x). Our estimator for µ =

∫

f(x)p(x)dx is

µ̂WI =

∑n
i=1 f(~Xi)w(~Xi)
∑n

i=1 w(~Xi)
(11.36)

where the WI subscript indicates this is the estimator coming from weighted importance
sampling.

One way in which weighted importance sampling can do poorly is that the weighted are
unbalanced, i.e., most of them are very small and only a few contribute to the overall weight.
One measure of this is the effective sample size given by

(
∑

i wi)
2

∑

i w
2
i

(11.37)

where wi = w(~Xi).

11.3.2 Resampling

Before we discuss sequential monte carlo, we first consider the “resampling” that is part of the
algorithm.

We want to compute µ = E[f(~X)] using weighted importance sampling as above. We

generate N samples ~X1, · · · , ~XN according to the density q(x) and then approximate µ by

µ̂WI =
N
∑

i=1

pif(~Xi) (11.38)

where pi are the normalized importance sampling weights:

pi =
wi

∑n
j=1 wj

(11.39)

Note that we can think of this as the integral of f with respect to the measure

N
∑

i=1

piδXi
(x) (11.40)

Resampling means that we replace this measure by

1

N

N
∑

i=1

NiδXi
(x) (11.41)

where the Ni are non-negative integers whose sum is N . So the new estimator for µ is

µ̂R =
1

N

N
∑

i=1

Nif(Xi) (11.42)

There are different methods for choosing the Ni.

The simplest method is to draw N independent samples from the discrete density (11.40).
This means the joint distribution of N1, N2, · · · , NN is a multinomial distribution with N trials
and probabilities p1, p2, · · · , pN . Note that many of the Ni will be zero. We would like to know
that µ̂R converges to µ as N → ∞. This is subtle. Note that the Ni are not independent.

We first show it is an unbiased estimator.

E[µ̂R] =
1

N

N
∑

i=1

E[Nif(Xi)] (11.43)

We compute using the tower property:

E[Nif(Xi)] = E[E[Nif(Xi)|X1, · · · , XN]] (11.44)

= E[f(Xi)E[Ni|X1, · · · , XN]] = E[f(Xi)Npi] (11.45)

So

E[µ̂R] =
N
∑

i=1

E[f(Xi)pi] = µ (11.46)

Next we show that for bounded functions f , the estimator converges to µ in the L2 sense (and
hence in probability). It converges a.s., but we do not prove this. See the article by Cristan.
We already know that the estimator from weighted importance sampling converges to µ with
probability one, i.e., µ̂WI → µ with probability one. Since f is bounded the bounded
convergence theorem implies we also have convergence in L2. So it suffices to show µ̂R − µ̂WI

converges to 0 in L2, i.e., we need to show E[(µ̂R − µ̂WI)
2] → 0. Note that

µ̂R − µ̂WI =
1

N

N
∑

i=1

f(Xi)(Ni − piN) (11.47)

We use conditioning again:

E[(µ̂R − µ̂WI)
2] = E[E[(µ̂R − µ̂WI)

2|X1, · · · , XN]] (11.48)

We have

E[(µ̂R − µ̂WI)
2|X1, · · · , XN]] (11.49)

=
1

N2

N
∑

i,j=1

f(Xi)f(Xj)E[(Ni − piN)(Nj − pN)|X1, · · · , XN] (11.50)

Conditioned on X1, X2, · · · , XN , the pi are constant and the Ni follow a multinomial
distribution. So we can compute

E[(Ni − piN)(Nj − pN)|X1, · · · , XN] = −Npipj (11.51)

So

|E[(µ̂R − µ̂WI)
2|X1, · · · , XN]]| ≤

1

N

N
∑

i,j=1

|f(Xi)f(Xj)|pipj ≤
||f ||2∞
N

(11.52)

Thus

E[(µ̂R − µ̂WI)
2] = E[E[(µ̂R − µ̂WI)

2|X1, · · · , XN]] (11.53)

≤ E[|E[(µ̂R − µ̂WI)
2|X1, · · · , XN]|] ≤

||f ||2∞
N

→ 0 (11.54)

There are other ways to define the Ni. The definition above is not ideal because it introduces
a fair amount of variance into the problem. Suppose we have a relatively small set of indices
for which piN is relatively large and the rest of the piN are close to zero. The above
procedure will replace the one copy for index i with Ni copies where the mean of Ni is piN
but the standard deviation is of order

√
Ni. It might be better to take the number of copies to

be piN rounded to the nearest integer. The following algorithm does something in this spirit.

Stratified resampling Let ni be the largest integer less than or equal to piN . Note that the
sum of the ni cannot exceed N . Create ci copies of Xi. We are still short Nr = N −∑

i ni

samples. Draw a sample of size Nr from {1, 2, · · · , N} uniformly and without replacement.
Add these Xi to the previous ones. Finally, if it makes you feel better you can do a random
permutation of our sample of size N . (What’s the point?)

11.3.3 sequential MC

Now suppose that instead of a random vector we have a stochastic process X1, X2, X3, · · ·. We
will let X stand for X1, X2, X3, · · ·. We want to estimate the mean of a function of the process
µ = f(X). It doesn’t make sense to try to give a probability density for the full infinite
process. Instead we specify it through conditional densities:
p1(x1), p2(x2|x1), p3(x3|x1, x2), · · · , pn(xn|x1, x2, · · · , xn−1), · · ·. Note that it is immediate from
the definition of conditional density that

p(x1, x2, · · · , xn) = pn(xn|x1, x2, · · · , xn−1)pn−1(xn−1|x1, x2, · · · , xn−2) (11.55)

· · · p3(x3|x1, x2)p2(x2|x1)p1(x1) (11.56)

We specify the proposal density in the same way:

q(x1, x2, · · · , xn) = qn(xn|x1, x2, · · · , xn−1)qn−1(xn−1|x1, x2, · · · , xn−2) (11.57)

· · · q3(x3|x1, x2)q2(x2|x1)q1(x1) (11.58)

So the likehood function is

w(x) =
∏

n≥1

pn(xn|x1, x2, · · · , xn−1)

qn(xn|x1, x2, · · · , xn−1)
(11.59)

An infinite product raises convergence questions. But in applications f typically either
depends on a fixed, finite number of the Xi or f depends on a finite but random number of
the Xi. So suppose that f only depends on X1, · · · , XM where M may be random. To be
more precise we assume that there is a random variable M taking values in the non-negative
integers such that if we are given that M = m, then f(X1, X2, · · ·) only depends on
X1, · · · , Xm. So we can write

f(X1, X2, · · ·) =
∞
∑

m=1

1M=m fm(X1, · · · , Xm) (11.60)

We also assume that M is a stopping time. This means that the event M = m only depends
on X1, · · · , Xm. Now we define

w(x) =
∞
∑

m=1

1M=m(x1, · · · , xm)
m
∏

n=1

pn(xn|x1, x2, · · · , xn−1)

qn(xn|x1, x2, · · · , xn−1)
(11.61)

MORE Explain the potential problem that the weights can degenerate to the point that
most are zero.

The final step is to modify the above by resampling at each time step. So the sequential
Monte Carlo algorithm is as follows. Throughout N will be the number of samples. They are
often called “particles.” (There are variants where the number of particles changes with time,
but we only consider an algorithm where the number stays constant.)

1. Initialize. Given N iid samples X1
1 , ·, XN

1 from q1(). The subscript 1 means t = 1.

2. Importance sampling. Given X1
1:t−1, · · · , XN

1:t−1, generate (independently) Y j
t from

qt(·|Xj
1:t−1). The Y j

t are conditionally independent given X1
1:t−1, · · · , XN

1:t−1, but not
independent. Compute the weights

wt,j =
pt(Y

j
t |Xj

1:t−1)

qt(Y
j
t |Xj

1:t−1)
(11.62)

and then let pt,j be the normalized weights:

pt,j =
wt,j

∑N
i=1 wt,j

(11.63)

3. Resample. Let Zj
1:t = (Xj

1:t−1, Y
j
t). Generate Xj

1:t by independently sampling (N times)
from the discrete distribution which has the values Zj

1:t with probability pt,j. So we are
drawing N independent samples from the mixture

N
∑

j=1

pt,jδZj
1:t

(11.64)

We do steps 2 and 3 for t = 2, · · · , T where T could be a random stopping time.

Example - random walk: We look at a one-dimensional random walk which only takes
steps of ±1. The probability of going right is p. For a proposal distribution we use a
symmetric random walk which goes right or left with probability 1/2. We run the walk for
100 time steps. The random variable we study is the position of the walk at the end of the
100 steps. Note that we know µ exactly. It is 100(2p− 1). We do two simulations, each with
2, 000 samples. One simulation is weighted importance sampling. The other is sequential MC
using the multinomial resampling. Figure 11.6 shows the two estimators µ̂WI and µ̂R as a
function of p, along with the exact result.

To see if the breakdown for the weighted importance sampling simulation somes from the
weights becomes very unbalanced we plot the effective sample size as a function of time for

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

m
u-

ha
t

p

IS
SMC
exact

Figure 11.6:

several values of p in figure 11.7. The figure shows that for all values of p the effective sample
size usually decreases with time. The rate of decrease gets larger as p moves away from 1/2.

In figure 11.8 we plot the effective sample size at time 100 as a function of p. Note that the
value of p where the effective sample size becomes small corresponds with the value of p in
figure 11.6 where the estimator µ̂R deviates significatly from µ.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50 60 70 80 90 100

ef
fe

ct
iv

e
sa

m
pl

e
si

ze

time

"eff0.525"
"eff0.550"
"eff0.575"
"eff0.600"

Figure 11.7:

 1

 10

 100

 1000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

si
ze

p

Effective sample size, N=2000

Figure 11.8:

