
Chapter 5

Variance reduction

The error in a direct Monte Carlo simulation goes as σ/
√
n. So there are two ways we can

reduce the error. Run the simulation for a longer time, i.e., increase n or find a different
formulation of the Monte Carlo that has a smaller σ. Methods that do the latter are know as
variance reduction.

5.1 Antithetic variables

If X and Y are independent, then var(X + Y) = var(X) + var(Y). If they are not
independent the covariance enters. Letting µX , µY denote the means of X and Y , we have

var(X + Y) = E[(X + Y)2]− (µX + µY)
2 (5.1)

= E[X2]− µ2

X + E[Y 2]− µ2

Y + 2(E[XY]− µXµY) (5.2)

= var(X) + var(Y) + 2cov(X, Y) (5.3)

The covariance is cov(X, Y) = ρX,Y σXσY and ρ lies between −1 and 1. If ρ is negative the
variance of X + Y is smaller than the sum of their variances. Antithetic variables take
advantage of this fact.

Definition 1 Random variables X, Y on the same probability space are antithetic if they have

the same distribution and their covariance is negative.

Suppose we want to compute µ = E[X] and we can find another random variable Y such that
X, Y is an antithetic pair. So E[Y] is also equal to µ. Our Monte Carlo algorithm is as

1

follows. We generate n indendent samples ω1, · · · , ωn from the probability space and let
Xi = X(ωi) and Yi = Y (ωi). Our estimator for µ is then

µ̂n =
1

2n

n
∑

i=1

(Xi + Yi) (5.4)

Obvious the mean of µ̂n is µ, so this is an unbiased estimator. Let ρ denote the correlation of
X and Y . Since they have the same distribution, they have the same variance. We denote it
by σ2. So the variance of our estimator is

var(µ̂n) =
1

(2n)2
n var(X1 + Y2) (5.5)

=
1

2n
σ2(1 + ρ) (5.6)

To compare this with direct Monte Carlo just using X we have to pay attention to the times
involved. Recall that the relevant quantity for the quality of our MC is σ2τ , where τ is the
time to generate a sample.

For direct MC with just X we have to generate an ω and then evaluate X on it. For our
antithetic MC we have to generate an ω and then evaluate both X and Y on it. Let τω be the
time required to generate an ω. We assume it takes the same time to evalute Y that it does
to evaluate Y . Call that time τe. (e for evaluation.) Then the original MC takes time τω + τe,
while the antithetic MC takes time τω + 2τe. So we need to compare σ2(τω + τe) for the
original MC with σ2 1

2
(1 + ρ)(τω + 2τe) So the antithetic is better if

1

2
(1 + ρ)(τω + 2τe) < τω + τe (5.7)

If τω is neglible compared to τe then this simplifies to ρ < 0. On the other hand, if τe is
neglible compared to τω then this simplifies to ρ < 1 which is always true unless Y = X. Note
that the advantage of the antithetic MC will be large only if ρ is close to −1.

If we want to find a confindence interval for our estimate, we need the variance of the
antithetic estimator. We could use the calculations above. But this requires estimating ρ. We
can avoid this by the following approach. Let Z = (X + Y)/2, and let Zi = (Xi + Yi)/2. We
can think of our antithetic Monte Carlo as just generating n samples of Z. Then we compute
the sample variance of the sample Z1, · · · , Zn and just do a straightforward confidence interval.

Of course this is only useful if we can find antithetic pairs. We start with a trivial example.
We want to compute

µ =
∫

1

0

f(x)dx = E[f(U)] (5.8)

where U is a uniform random variable on [0, 1]. So we are computing the mean of X = f(U).
Suppose f is an increasing function. Then it might be helpful to balance a value of U in
[0, 1/2] with its “reflection” 1− U . So take Y = F (1− U). This has the same distribution
(and hence the same mean) as X since 1− U is uniform on [0, 1]. A fancy way to say this is
that the uniform probability measure on [0, 1] is invariant under the map 1 → 1− x on [0, 1].

So we consider the following general set-up. We assume there is a map R : Ω → Ω under
which the probability measure is invariant, i.e., P = P◦R. We define Y (ω) = X(Rω). Then Y
has the same distribution as X and hence the same mean. We need to study the correlation
of X and Y to see if this will be useful. Define

Xe(ω) =
1

2
[X(ω) +X(Rω)], (5.9)

Xo(ω) =
1

2
[X(ω)−X(Rω)] (5.10)

Then X = Xo +Xe, and we can think of this as a decomposition of X into its even and odd
parts with respect to R. (Note Xe(Rω) = Xe(ω), Xo(Rω) = −Xo(ω).) The invariance of P
under R implies that

E[Xe] = µ, E[Xo] = 0, E[XeXo] = 0 (5.11)

Thus Xe and Xo are uncorrelated. This is weaker than being independent, but it does imply
the variance of their sum is the sum of their variances. So if we let σ2

e and σ2

o be the variances
of Xe and Xo, then σ2 = σ2

e + σ2

o , where σ is the variance of X. Note that the variance of Y is
also equal to σ2. A little calculation shows that ρ, the correlation between X and Y , is given
by

ρ =
σ2

e − σ2

o

σ2
e + σ2

o

(5.12)

Thus Y will be a good antithetic variable if σe is small compared to σo. This will happen if X
is close to being an odd function with respect to R.

Literature seems to say that if X = f(U) where U is a vector of i.i.d. uniform on [0, 1] and f
is increasing then Y = f(1− U) is a good antithetic RV where in 1− U , 1 means the vector
with 1’s in all the components.

Stop - Wed, 2/3

��
��
��

��
��
��

��
��
��

��
��
��A B

T T

T T

1 4

2 5

T
3

Figure 5.1: Network example. We seek the quickest path from A to B.

Network example from Kroese The times Ti are independent and uniformly distributed
but with different ranges:
T1 uniform on [0, 1]
T2 uniform on [0, 2]
T3 uniform on [0, 3]
T4 uniform on [0, 1]
T5 uniform on [0, 2]
The network is small enough that you can find the mean time of the quickest path
analytically. It is

µ =
1339

1440
≈ 0.92986 (5.13)

Let U1, U2, U3, U4, U5 be independent, uniform on [0, 1]. Then we can let T1 = U1, T2 = 2 ∗ U2,
etc. And the quickest time can be written as a function X = h(U1, U2, U3, U4, U5). We let
Y = h(1− U1, 1− U2, 1− U3, 1− U4, 1− U5), and then Z = (X + Y)/2. Our antithetic
estimator is

1

n

n
∑

i=1

Zi =
1

n

n
∑

i=1

1

2
(Xi + Yi) (5.14)

where Xi and Yi use the same U vector. Some simulation shows that without using the
antithetic pair, the variance of X is approximately 0.158. Another simulation using the
antithetic pair shows that the variance of Z is approximately 0.0183. The error is
proportional to the square root of the variance, so the error is reduced by a factor of
√

0.158/0.0183. But we must keep in mind that it takes twice as long to generate a sample of

Z as it does a sample of X. So for a fixed amount of CPU time we will have half as many
samples of Z which means a factor of

√
2 for the error. So the true reduction in the error is a

factor of
√

0.158/(2 ∗ 0.0183) which is just over 2. But keep in mind that to reduce the error
by a factor of 2 by increasing the number of samples would require generating 4 times as
many samples. So if we think in terms of how long it takes to reach a given error level, then
the antithetic method has reduced the computation time by a factor of 4.

5.2 Control variates

Consider the bridge example again. The times T1 and T4 are both uniformly distributed on
[0, 1] while the other three times are uniformly distributed on larger intervals. So we expect
that the quickest path will be the path through bonds 1 and 4 with fairly high probability. In
other words, if we let X be the minimum time for the full network and let Y = T1 + T4, then
Y will be equal to X with high probability. Note that we know the mean of Y . Can we take
advantage of this to improve our Monte Carlo method? Let ν be the known mean of Y . (Of
course, ν = 1/2 + 1/2 = 1.) Then µ = E[X − (Y − ν)]. So we can do a Monte Carlo
simulation of X − (Y − ν) rather than X. The hope is that X − (Y − ν) has a smaller
variance since it equals ν most of the time.

The general setup is as follows. We want to compute µ = E[X]. We have another random
variable Y on the same probability space and we know its mean. Call it ν = E[Y]. (Note that
µ is unknown, ν is known.) We generate a random sample ω1, ω2, · · · , ωn and evaluate X and
Y on them. So let Xi = X(ωi) and Yi = Y (ωi). Now define

l̂n =
1

n

n
∑

i=1

[Xi − α(Yi − ν)] (5.15)

where α is a parameter. In our discussion of the brigde example we took α = 1, but now we
allow a more general choice of the new estimator. Note that E[l̂n] = µ, i.e., for any choice of α
this is an unbiased estimator of µ.

Let ρ denote the correlation of X and Y . Let σ2

X and σ2

Y be the variances of X and Y . The
variance of our estimator is

var(l̂n) =
1

n
var(X − αY) (5.16)

We have

var(X − αY) = σ2

X + α2σ2

Y − 2αρσXσY (5.17)

We can use any α we want, so we choose α to minimize this variance. The minimizing α is
given by

α0 =
ρσX

σY

=
cov(X, Y)

σ2

Y

(5.18)

in which case

var(X − α0Y) = σ2

X(1− ρ2) (5.19)

So the variance of our estimator is σ2

X(1− ρ2)/n. So we have reduced the variance by a factor
of 1− ρ2. So the method works well if ρ is close to 1 or −1.

Note that to compute the optimal α we need to know σX , σY , and ρ. We might know σY , but
we almost certainly will not know σX or ρ. So we have to use our sample to estimate them.
We estimate σ2

X (and σ2

Y if needed) with the usual sample variance. And we estimate ρ with

ρ̂n =
1

n

n
∑

i=1

[XiYi −Xnν] (5.20)

where Xn is the samples mean of X.

In the above we have assumed that the mean of Y is known exactly. Even if we do not know
it exactly, but just have a good approximation we can still use the above. If it is much faster
to compute the control RV Y than the original RV X, then we could use a preliminary Monte
Carlo to compute a good approximation to the mean of Y and then do the above Monte
Carlo to get the mean of X.

We look at the last paragraph in more detail and think of what we are doing as following. We
want to compute E[X]. We have another random variable Y such that we think the varince of
X − Y is small. We write X as (X − Y) + Y and try to compute the mean of X by
computing the means of X − Y and Y separately. Let σ2

x, σ
2

Y be the variances of X and Y .
Let σX−Y be the variance of X − Y , which hopefully is small. Let τX and τY be the time it
take to generate samples of X and Y . We assume we have a fixed amount T of CPU time. If
we do ordinary MC to compute E[X], then we can compute T/τX samples and the square of
the error will be σ2

XτX/T .

Now suppose we do two independent Monte Carlo simulations to compute the means of
X − Y and Y . For the X − Y simulation we generate n1 samples and for the Y simulation we
generate n2 samples. These numbers are constrained by n1(τX + τY) + n2τY = T . We assume
that τY is much smaller than τX and replace this constraint by n1τX + n2τY = T . Since our
two Monte Carlos are independent, the square of the error is the sum of the squares of the
errors of the two Monte Carlos, i.e.,

σ2

X−Y

n1

+
σ2

Y

n2

(5.21)

Now we minimize this as a function of n1 and n2 subject to the constraint. (Use Lagrange
multiplier or just use the constraint to solve for n2 in terms of n1 and turn it into a one
variable minimization problem.) You find that the optimal choice of n1, n2 is

n1 =
TσX−Y√

τX(σX−Y
√
τX + σY

√
τY)

, (5.22)

n2 =
TσY√

τY (σX−Y
√
τX + σY

√
τY)

(5.23)

which gives a squared error of

1

T
(σX−Y

√
τX + σY

√
τY)

2 (5.24)

If σX−Y is small compared to σX and σY and τY is small compared to τX , then we see this is a
big improvement over ordinary MC.

Network example We return to our network example. For the control variable we use
Y = T1 + T4. So we do a Monte Carlo simulation of Z = X + (Y − ν) where ν = E[Y] = 1.
We find that the variance of Z is approximately 0.0413. As noted earlier the variance of X is
approximately 0.158. So the control variate approach reduced the variance by a factor of
approximately 3.8. This corresponds to a reduction in the error by a factor of

√
3.8. If we

want a fixed error level then the use of a control variate reduces the computation time by a
factor of 3.8.

Note that you do not have to know what α you want to use before you do the MC run. You
can compute the sample means and sample variances for X and Y separately as well as an
estimator for ρ. Then at the end of the run you can use the sample variances and estimator
for ρ to compute an estimator for the best α. Note, however, that if you do this your α now
depends on all the samples and so the samples Xi − αYi are not independent. So the usual
method of deriving a confidence interval is not legit. If you really want to worry about this
see section 4.2 of Fishman’s Monte Carlo: Concepts, Algorithms, and Applications. I would
be surprised if it matters unless n is small.

It is possible to use more than one control variable. Let ~Y = (Y 1, · · · , Y d) be vector of
random variables. We assume we know their means νi = E[Y i]. Then our estimator is

l̂n =
1

n

n
∑

i=1

[Xi − (~α, ~Yi − ~ν)] (5.25)

where ~α is a vector of parameters and (~α, ~Y − ~ν) denotes the inner product of that vector and
~Y − ~ν. To find the optimal α we need to minimize the variance of X − (~α, Y).

var(X − (~α, Y)) = cov(X − (~α, Y), X − (~α, Y)) (5.26)

= var(X,X)− 2
2

∑

i=1

αicov(X, Yi) +
2

∑

i,j=1

αiαjcov(Yi, Yj) (5.27)

Let Σ be the matrix with entries cov(Yi, Yj), i.e., the covariance matrix of the control variates.

Let ~C be the vector of covariances of X and the Yi. Then the above is

var(X,X)− 2
2

∑

i=1

αiCi +
2

∑

i,j=1

αiαjΣi,j = var(X,X)− 2(~α, ~C) + (~α,Σ~α) (5.28)

Optimal α is

~α0 = Σ−1 ~C (5.29)

5.3 Stratified sampling

To motivate stratified sampling consider the following simple example. We want to compute

I =
∫

1

0

f(x) dx (5.30)

On the interval [0, 1/2] the function f(x) is nearly constant, but on the interval [1/2, 1] the
function varies significantly. Suppose we wanted to use Monte Carlo to compute the two
integrals

∫

1/2

0

f(x) dx,
∫

1

1/2
f(x) dx (5.31)

The Monte Carlo for the first integral will have a much smaller variance than the Monte Carlo
for the second integral. So it would make more sense to spend more time on the second
integral, i.e., generate more samples for the second integral. However, under the usual Monte
Carlo we would randomly sample from [0, 1] and so would get approximately the same
number of Xi in [0, 1/2] and in [1/2, 1]. The idea of stratified sampling is to divide the
probability space into several regions and do a Monte Carlo for each region.

We now turn to the general setting. As always we let Ω be the probability space, the set of
possible outcomes. We partition it into a finite number of subsets Ωj , j = 1, 2, · · · , J . So

Ω = ∪J
j=1

Ωj, Ωj ∩ Ωk = ∅ if j 6= k (5.32)

We let pj = P (Ωj) and let Pj be P (·|Ωj), the probability measure P conditioned on Ωj. We
assume that the probabilities pj are known and that we can generate samples from the
conditional probability measures P (·|Ωj). The sets Ωj are called the strata. Note that the
partition theorem says that

P (·) =
J
∑

j=1

pjP (· · · |Ωj), (5.33)

E[X] =
J
∑

j=1

pjE[X|Ωj] (5.34)

We are trying to compute µ = E[X]. We will generate samples in each strata, and the
number of samples from each strata need not be the same. So let nj, j = 1, 2, · · · , J be the
number of samples from strata j. Let Xj

i , i = 1, 2, · · · , nj be the samples from the jth strata.
Then our estimator for µ is

µ̂ =
J
∑

j=1

pj
nj

nj
∑

i=1

Xj
i (5.35)

Note that the expected value of Xj
i is E[X|Ωj]. So the mean of µ̂ is

E[µ̂] =
J
∑

j=1

pjE[X|Ωj] = E[X] (5.36)

where the last equality follows from the partition theorem.

Let

µj = E[X|Ωj], σ2

j = E[X2|Ωj]− µ2

j (5.37)

The quantity σ2

j is often denoted var(X|Ωj). It is the variance of X if we use P (·|Ωj) as the
probability measure instead of P (·).

We write out our estimator as

µ̂ =
J
∑

j=1

pjµ̂j, µ̂j =
1

nj

nj
∑

i=1

Xj
i (5.38)

We assume that we generate sample from different strata in an independent fashion. So the
random variables µ̂1, µ̂2, · · · , µ̂J are independent. The variance of µ̂j is σ

2

j . So we have

var(µ̂) =
J
∑

j=1

p2j
σ2

j

nj

(5.39)

Stop - Mon, 2/8

How do we choose the nj? One possible choice is proportional allocation. Letting N denote
the total number of samples we will generate, we take nj = pjN . (Of course, we have to round
this to the nearest integer.) This gives

var(µ̂) =
1

N

J
∑

j=1

pjσ
2

j (5.40)

To compare this with the variance of ordinary MC, we do a little computation.

J
∑

j=1

pjσ
2

j =
J
∑

j=1

pjE[(X − µj)
2|Ωj] (5.41)

=
J
∑

j=1

pjE[((X − µ) + (µ− µj))
2|Ωj] (5.42)

=
J
∑

j=1

pj
[

E[((X − µ)2|Ωj] + (µ− µj))
2 + 2(µ− µj)E[X − µ|Ωj

]

(5.43)

Note that σ2 =
∑

j pjE[(X − µ)2|Ωj], and E[X − µ|Ωj] = µj − µ. So the above reduces to

J
∑

j=1

pjσ
2

j = σ2 −
J
∑

j=1

pj(µ− µj)
2 (5.44)

So using proportional allocation the variance of the Monte Carlo using strata is smaller than
the variance of plain Monte Carlo unless the µj are all equal to µ We also see that we should
try to choose the strata so that the means within the strata are far from the overall mean.

But is proportional allocation optimal? Recall our motivating example. We probably should
sample more in the Ωj with higher variance. We can find the optimal choice of nj . We want
to minimize var(µ̂) subject to the constraint that the total number of samples is fixed, i.e.,

J
∑

j=1

nj = N (5.45)

This is a straightforward Lagrange multiplier problem. Let

f(n1, n2, · · · , nJ) =
J
∑

j=1

p2j
σ2

j

nj

, (5.46)

g(n1, n2, · · · , nJ) =
J
∑

j=1

nj (5.47)

We want to minimize f subject to g = N . The minimizer will satify

∇f(n1, n2, · · · , nJ) = −λ∇g(n1, n2, · · · , nJ) (5.48)

for some λ. So for j = 1, 2, · · · , J

−p2j
σ2

j

n2
j

= −λ (5.49)

Solving for nj,

nj =
1√
λ
pjσj (5.50)

Thus

nj = cpjσj (5.51)

where the constant c is chosen to make the sum of the nj sum to N . So c = N/
∑

j pjσj . This
choice of nj makes the variance of the estimate

var(µ̂) =
1

N
[
J
∑

j=1

pjσj]
2 (5.52)

Note that the Cauchy Schwarz inequality implies this is less than or equal to the variance we
get using proportional allocation and it is equal only if the σj are all the same. Of course, to
implement this optimal choice we need to know all the σj whereas the proportional allocation
does not depend on the σj.

Suppose the time to generate a sample depends on the strata. Let τj be the time to generate
a sample in the jth strata. Then if we fixed the amount of computation time to be T , we have
∑

j njτj = T . Then using a Lagrange multiplier to find the optimal nj we find that nj should
be proportional to pjσj/

√
τj.

Example: rainfall example from Owen.

Example: Network example. Partition each uniform time into 4 intervals, so we get 45

strata.

5.4 Conditioning

To motivate this method we first review a bit of probability. Let X be a random variable, ~Z a
random vector. We assume X has finite variance. We let E[X|~Z] denote the conditional

expectation of X where the conditioning is on the σ-field generated by ~Z. Note that E[X|~Z]
is a random variable. We assume denote its variance by var(E[X|~Z]).

We define the conditional variance of X to be

var[X|~Z] = E[X2|~Z]− (E[X|~Z])2 (5.53)

Note that var[X|~Z] is a random variable. There is a conditional Cauchy Schwarz inequality
which says that this random variable is always non-negative. A simple calculation gives

var(X) = E[var[X|~Z]] + var(E[X|~Z]) (5.54)

In particular this shows that E[X|~Z] has smaller variance than X.

The conditional expectation E[X|~Z] is a function of ~Z. There is a Borel-measurable function

h : Rd → R such that X = h(~Z). Now suppose that it is possible to explicitly compute

E[X|~Z], i.e., we can explicitly find the function h. Suppose also that we can generate samples

of ~Z. One of the properties of conditional expectation is that the expected value of the
conditional expectation is just the expected value of X. So we have

µ = E[X] = E[E[X|~Z]] = E[h(~Z)] (5.55)

So we have the following Monte Carlo algorithm. Generate samples ~Z1, · · · , ~Zn of ~Z. Compute
h(~Z1), · · · , h(~Zn). Then the estimator is

µ̂n =
1

n

n
∑

i=1

h(~Zi) (5.56)

Of course the non-trivial thing is to find a random vector ~Z for which we can explicitly
compute E[X|~Z].

Example: Let X1, · · · , Xd be independent random variables with exponential distributions
and E[Xi] = 1/λi. We want to compute the probability that the largest of the d random
variables is X1, i.e., we want to compute

µ = P (Xi < X1, i = 2, · · · , d) (5.57)

We are particularily interested in the case that λ1 is large compared to the other λi. In this
case X1 is usually small compared to the other Xi, so so the the probability µ will be tiny and
very hard to compute accurately with an ordinary MC.

Suppose we condition on X1. Then keeping in mind that the Xi are independent, we have

P (Xi < X1, i = 2, · · · , d|X1 = x1) = P (Xi < x1, i = 2, · · · , d|X1 = x1) (5.58)

= P (Xi < x1, i = 2, · · · , d) (5.59)

=
d
∏

i=2

P (Xi < x1) (5.60)

Note that if X has an exponential distribution with mean λ, then P (X < x) = 1− e−λx.
Define F (x) = 1− e−x. So P (X < x) = F (λx). Then the above becomes

P (Xi < X1, i = 2, · · · , d|X1 = x1) =
d
∏

i=2

F (λix1) (5.61)

Now the probability we want is

µ = P (Xi < X1, i = 2, · · · , d) = E[P (Xi < X1, i = 2, · · · , d|X1)] = E[
d
∏

i=2

F (λiX1)] (5.62)

If λ1 is large compared to the other λi, then λiX1 will typically be small and so the random
variable in the expectation is very small. But that is ok. It is much better that trying to do
MC on an indicator function that is 0 with very high probability.

Example In the network example, take ~Z = (T1, T2, T3). It is possible, but not trivial, to
compute E[X|T1, T2, T3] where X is the minimum time to get from A to B.

Stop - Wed, 2/10

