
Chapter 7

Markov chain background

A stochastic process is a family of random variables {Xt} indexed by a varaible t which we
will think of as time. Time can be discrete or continuous. We will only consider the case of
discrete time since that is what is relevant for MCMC. So we consider a sequence of random
variables Xn indexed by a non-negative integer. The set of possible values of the random
variables Xn is called the state space. It could be finite, countable or an uncountable set like
R or Rd. The intuitive definition of a Markov process is that if you know Xn = x, then the
probability distrbution of where you go next, i.e., of Xn+1 only depends on x, not on how the
process got to x. Loosely speaking, this says that the future (time n+ 1) depends on the past
(times 1, 2, · · · , n) only through the present (time n).

We start with Markov chains with finite and then countable state spaces. For these sections I
am extracting material from Durrett’s Essentials of Stochastic Processes. Then for the section
on uncountable state spaces I follow chapter 6 in the Robert and Casella book. We note that
our study of Markov processes will be somewhat unbalanced since we are focusing on just the
things we need for MCMC.

7.1 Finite state space

The state space is the set of possible values of the random variables Xn. In this section we
study the case of finite S. A Markov chain is specified by giving a collection of transition
probabilities p(x, y) where x, y ∈ S. p(x, y) is the probability of jumping to state y given that
we are presently in state x. So if we keep x fixed and sum over y we must get 1.
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Definition 1 A transition function p(x, y) is a non-negative function on S × S such that
∑
y∈S

p(x, y) = 1 (7.1)

To completely specify the Markov chain we also need to give the initial distribution of the
chain, i.e., the distribution of X0.

Definition 2 Let S be a finite set and p(x, y) a transition function for S. Let π0(x) be a
probability distribuion on S. Then the Markov chain corresponding to initial distribution π0
and transition probabilities p(x, y) is the stochastic process Xn such that

P (X0 = x) = π0(x), (7.2)

P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, · · · , X2 = x2, X1 = x1) = p(xn, xn+1) (7.3)

Note that the last equation implies that

P (Xn+1 = xn+1|Xn = xn) = p(xn, xn+1) (7.4)

A hard core mathematician would feel compelled to prove at this point that such a process
exists. This is not that easy (it requires an extension theorem), and we will not do it. We do
note that if we want to sample the process, i.e., generate a sample path for Xn, this is
straightforward. Sample X0 according to the distribution π0. Then sample X1 according to
the distribution p(X0, ·). Continue, sample Xn according to the distribution p(Xn−1, ·).

The following is an easy consequence of the equations above

Proposition 1 For any states x0, x1, · · · , xn,

P (X0 = x0, X1 = x1, · · · , Xn = xn) = p(x0, x1)p(x1, x2) · · · p(xn−1, xn) (7.5)

The transition matrix gives the transition probabilities for one time step. We consider the
transition probabilities for longer times. Let pm(x, y) = P (Xn+m = y|Xn = x).

Proposition 2 (Chapman-Kolmogorov equation)

pm+k(x, y) =
∑
z

pm(x, z)pk(z, y) (7.6)

If we think of pn(x, y) as the elements of a matrix, then this matrix is just p raised to the n
where p is the matrix with matrix elements p(x, y). If πn(x) = P (Xn = x) and we think of πn
as a row vector, then πn = π0p

n.



We are primarily interested in the long time behavior of our chain. We impose some
conditions on the chain for this study to rule out chains that we do not care about for
MCMC. It is possible that the state space decomposes into several subsets with no transitions
between the subsets. Or there could be subsets which have transitions out of the subset but
not into it. Give some examples of these To eliminate these sorts of chains we make the
following definition. The definition says that a chain is irreducible if it is possible to transition
from any state to any other state in some finite number of steps.

Definition 3 A Markov chain is irreducible if for every x, y ∈ S there is an integer n and
states x0, x1, · · · xn such that x = x0 and y = xn and p(xi−1, xi) > 0 for i = 1, · · · , n. In other
words, there is an integer n such that pn(x, y) > 0

Define Tx = min{n ≥ 1 : Xn = y}. This is the time of the first return (after time 0) to state x.
Let Px denote the probability measure when X0 = x. A state is recurrent if Px(Tx <∞) = 1.
So if we start in x we will eventually return to x. If this probability is less than 1 we say the
state is transient. It can be shown that if a finite state Markov chain is irreducible, then every
state x is recurrent. Finite state Markov chains can have transient states, but only if they are
not irreducible.

We need to rule out one more type of chain. Give example of periodic chain.

Definition 4 Let x ∈ S. The period of x is the greatest common division of the set of
integers n such that pn(x, y) > 0.

Theorem 1 In an irreducible chain all the states have the same period.

Definition 5 An irreducible chain is aperiodic if the common period of the states is 1.

Note that if there is a state x such that p(x, x) > 0, then the period of x is 1. So if we have an
irreducible chain with a state x such that p(x, x) > 0 then the chain is aperiodic. The
condition p(x, x) > 0 says that if you are in state x there there is nonzero probabiity that you
stay in state x for the next time step. In many applications of Markov Chains to Monte Carlo
there are states with this property, and so they are aperiodic.

An irreducible, aperiodic Markov chain has nice long time behavior. It is determined by the
stationary distribution.

Definition 6 A distribution π(x) on S is stationary if πP = π, i.e.,
∑
y∈S

π(y)p(y, x) = π(x) (7.7)



In words, a distribution is stationary if it is invariant under the time evolution. If we take the
initial distribution to be the stationary distribution, than for all n the distribution of Xn is
the stationary distribution. Note that the definition says that π is a left eigenvector of the
transition matrix with eigenvalue 1. It may seem a little strange to be working with left
eigenvectors rather than the usual right eigenvectors, but this is just a consequence of the
convention that P (Xn+1 = y|Xn = x) is p(x, y) rather than p(y, x).

Theorem 2 An irreducible Markov chain has a unique stationary distribution π.
Furthermore, for all states x, π(x) > 0.

Idea of proof: Eq. (7.1) implies that the constant vector is a right eigenvector of the
transition matrix with eigenvalue 1. So there must exist a left eigenvector with eigenvalue 1.
To see that it can be chosen to have all positive entries and is unique one can use the
Perron-Frobenius theorem. Durrett has a nice proof.
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In many problems there is a short-cut for finding the stationary distribution.

Definition 7 A state π is said to satisfy detailed balance if for all states x, y

π(x)p(x, y) = π(y)p(y, x) (7.8)

Note there are no sums in this equation.

Proposition 3 If a distribution π satisfies detailed balance, then π is a stationary
distribution.

Proof: Sum the above equation on y. QED

The converse is very false. Example

There are two types of convergence theorems. In the first type we start the chain in some
initial distribution and ask what happens to the distribution of Xn as n→ ∞.



Theorem 3 Let p(x, y) be the transition matrix of an irreducible, aperiodic finite state
Markov chain. Then for all states x, y,

lim
n→∞

pn(x, y) = π(y) (7.9)

For any initial distribution πo, the distribution πn of Xn converges to the stationary
distribution π.

The second type of convergence theorem is not a statement about distributions. It is a
statement that involves a single sample path of the process.

Theorem 4 Consider an irreducible, finite state Markov chain. Let f(x) be a function on the
state space, and let π be the stationary distribution. Then for any initial distribution,

P ( lim
n→∞

1

n

n∑
k=1

f(Xk) =
∑
x

f(x)π(x)) = 1 (7.10)

The second convergence theorem is the one that is relevant to MCMC. It says that if we want
to compute the expected value of f in the probability measure π and π is the stationary
distribution of some Markov chain, then we can run the chain for a long time and compute
the long time average of f(Xk) to get an approximation to the expected value of f .

7.2 Countable state space

Much of the finite state stuff carries over immediately. In particular the Chapman-Komogorov
eq. and the fact that the n step transition matrix is the n power of the transition matrix.
(Note that we now have infinite matrices.) The definition of irreducible and the period of a
state is the same. And in an irreducible Markov chain, all states have the same period.

Recall that Tx = min{n ≥ 1 : Xn = x}, the time of the first return to state x. And a state is
recurrent if Px(Tx <∞) = 1. There are two big changes when we go to infinite but countable
state spaces. First, there can be transient states even if the chain is irreducible. Second,
irreducible chains need not have stationary distibutions when they are recurrent. The
definition of recurrence needs to be refined.

In a finite state Markov chain the expected value Ex[Tx] is always finite for a recurrent state.
But in an infinite chain, it can be infinite. If Ex[Tx] <∞ we say the state is positive
recurrent. If Ex[Tx] = ∞ but Px(Tx <∞) = 1, we say the state is null recurrent. States
that are neither null or positive recurrent are said to be transient.



Theorem 5 In an irreducible chain either
(i) All states are transient
(ii) All states are null recurrent
(iii) All states are positive recurrent

MORE Example We consider a random walk on the non-negative integers. Let
0 < p < 1. The walk jumps right with probability p, left with probability 1− p. If it is at the
origin it jumps right with probability 1. Chain is positive recurrent if p < 1/2, null recurrent
if p = 1/2 and transient if p > 1/2.

Theorem 6 For an irreducible Markov chain with countable state space the following are
equivalent.

(i) All states are positive recurrent.

(ii) There is a stationary distribution π. (It is a distribution, so in particular
∑

x π(x) <∞.)

The two big convergence theorems of the previous section hold if we add the hypothesis that
there is a stationary distribution.

Theorem 7 Let p(x, y) be the transition matrix of an irreducible, aperiodic countable state
Markov chain which has a stationary distribution. Then for all states x, y,

lim
n→∞

pn(x, y) = π(y) (7.11)

For any initial distribution π0, the distribution πn of Xn converges to the stationary
distribution π in the total variation norm.

In the setting of a discrete (finite or countable) state space, the total variation norm is just an
l1 norm:

||pn(x, ·) = π(·)||TV =
∑
y

|pn(x, y) = π(y)| (7.12)

Theorem 8 Consider an irreducible, countable state Markov chain which has a stationary
distribution π. Let f(x) be a function on the state space such that

∑
x |f(x)|π(x) <∞. Then

for any initial distribution,

P ( lim
n→∞

1

n

n∑
k=1

f(Xk) =
∑
x

f(x)π(x)) = 1 (7.13)



The definition of detailed balance is just the same as in the finite state space case. And we
have

Proposition 4 If a distribution π satisfies detailed balance, then π is a stationary
distribution.

7.3 General state space

For finite or countable state spaces the transition kernel is a function on S × S. Since∑
y p(x, y) = 1, if we fix x we can think of p(x, ·) as a probability measure. For A ⊂ S, define

K(x,A) =
∑
y∈A

p(x, y) (7.14)

So K(x,A) is the probability we jump to some state in the set A given that we are currently
in state x.

Definition 8 Let S be a set and S a σ-field on S. The set S is called the state space. A
transition kernel K is a function from S × S into [0, 1] such that

(i) For all x ∈ S, K(x, ·) is a probability measure on (S,S).

(ii) For all A ∈ S, K(·, A) is a measurable function on S.

If S is finite or countable, then the transition function we considered in the previous section is
just given by p(x, y) = K(x, {y})

Suppose the state space is a subset of Rd and for all x, the measure K(x, ·) is absolutely
continuous with respect to Lebesgue measure. So there is a non-negative function k(x, y) such
that

K(x,A) =
∫
A
k(x, y) dy (7.15)

for A ∈ S. In this case we will refer to k(x, y) as the transition function. Note that it must
satisfy

∫
S
k(x, y)dy = 1, ∀x (7.16)

Note: Robert and Casella write the density for the transition kernel as K(x, y) rather then
k(x, y).



There are other situations in which there is a density of sorts. Something like the following
will come up when we look at Gibbs samplers. To keep the notation simpler we consider two
dimensions. Suppose the state space is R2 or a subset of it. We denote out states by (x, y)
and denote the Markov process by (Xn, Yn). We consider transition kernels that describe the
following. We flip a fair coin to decide whether we change the first component or the second
component. If we are changing the first component then the new state (Xn+1, Yn+1) is
(Xn, Yn+1) where the distribution of Yn+1 is absolutely continuous with respect to 1d
Lebesgue measure with a density that depends on (Xn, Yn). And if we are changing the
second component, ... So we have two functions k1(x, y; z) and k2(x, y; z) such that

K((x0, y0), ·) =
1

2
[δx,x0

× k2(x0, y0; y)dy + k2(x0, y0; x)dx× δy,y0 ] (7.17)

where we let (x, y) be the variables for the measure in K((x0, y0), ·).

Definition 9 Let K be a transition matrix on the state space (S,S). Let µ be a probability
measure on (S,S). A sequence of random variables X0, X1, X2, · · · is a Markov process with
transition kernel K and initial distribution µ if for all k = 0, 1, 2, · · ·,

P (Xk+1 ∈ A|X0, X1, · · · , Xk) =
∫
A
K(Xk, dx) (7.18)

and the distribution of X0 is µ.

It follows immediately from the definition that

P (Xk+1 ∈ A|Xk) =
∫
A
K(Xk, dx) (7.19)

Notation: The above equation is sometimes written as (Robert and Casella do this)

P (Xk+1 ∈ A|x0, x1, · · · , xk) = P (Xk+1 ∈ A|xk) =
∫
A
K(xk, dx) (7.20)

This should be taken to mean

P (Xk+1 ∈ A|X0 = x0, X1 = x1, · · · , Xk = xk) = P (Xk+1 ∈ A|Xk = xk) =
∫
A
K(xk, dx) (7.21)

The probability measure for the process depends on the transition kernel and the initial
distribution. Typically the kernel is kept fixed, but we may consider varying the initial
distribution. So we let Pµ denote the probability measure for initial distribution µ. We denote



the corresponding expectation by Eµ. The fact that such a Markov process exists is quite
non-trivial.

Example (Random walk) Let ξn be an iid sequence of RV’s, and let

Xn =
n∑

i=1

ξi (7.22)

Since Xn+1 = Xn + ξn+1, K(x, ·) = µξn+1+x where µξn+1+x denotes the distribution measure of
the RV ξn+1 + x.

Example (AR(1)) Let ǫn be an iid sequence. For example they could be standard normal
RV’s. Let θ be a real constant. Then define

Xn = θXn−1 + ǫn (7.23)

We take X0 = 0. The transition kernel is K(x, ·) = µǫn+1+θx.
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Let Kn(·, ·) be the function on S × S given by

Kn(x,A) = P (Xn ∈ A|X0 = x) (7.24)

These are the n step transition kernels. We now consider the Chapman Komogorov equations.

Notation remark: Let f(x) be a function on X and µ a measure on X. The integral of f
with respect to µ is denoted in several ways:

∫
X
fdµ =

∫
X
f(x)dµ =

∫
X
f(x)dµ(x) =

∫
X
f(x)µ(dx) (7.25)

The last one is most commonly seen in probability rather than analysis.

Proposition 5 Let m,n be positive integers and A ∈ S. Then

Kn+m(x,A) =
∫
S
Kn(y, A)Km(x, dy) (7.26)

for x ∈ S and A ∈ S.



The finite dimensional distributions are completely determined by µ and K. Let
A0, A1, · · · , An ∈ S.

P (X0 ∈ A0) =
∫
A0

K(X0, A1)µ(dx0) (7.27)

P (X0 ∈ A0, X1 ∈ A1, · · · , Xn ∈ An) =
∫
A0

dµ(x0)
∫
A1

K(x0, dx1) (7.28)

· · ·
∫
An

K(xn−1, dxn) (7.29)

Theorem 9 (weak Markov property) Let h(x1, x2, · · ·) be a reasonable function. Then for any
initial distribution and any positive integer k,

Eµ[h(Xk+1, Xx+2, · · ·)|X0, X1, · · · , Xk] = EXk
[h(X1, X2, · · ·)] (7.30)

Note that if we take h(x1, · · ·) = 1x1∈A then the above equation becomes the definition of a
Markov process.

The definition of irreducible for discrete state space does not work for general state space.

Definition 10 Let φ be a non-zero measure on the state space. A Markov chain is
φ-irreducible if for every A ∈ S with φ(A) > 0 and every x ∈ S there is a positive integer n
such that Kn(x,A) > 0.

Some caution with the meaning of this def. Consider a finite chain on {1, · · · , n} which is
irreducible. Now add one more state n+ 1 but the only new transitions are from n+ 1 to
{1, 2, · · · , n}. So there are no transitions from the original n states to state n+ 1. This is not
an irreducbile chain. n+ 1 is a transient state. But if φ(n+ 1) = 0, this new chain is
φ-irreducible.

Example: We return to the AR(1) example. Take the ǫn to be standard normal. Then we
can take φ to be Lebesgue measure on the real line. Argue the example is φ irreducible. Now
suppose ǫn is uniform on [−1, 1] and θ > 1. Argue the chain is not φ irreducible.

Now suppose θ > 1 and ǫn is uniformly distributed on [−1, 1]. Start the chain at X0 = 0.
Argue it is not φ irreducible where φ is Lebesgue measure.

Now suppose ǫn is absolutely continuous with respect to Lebesgue measure and the density is
positive everywhere. Then it is easy to see the chain is φ irreducible when φ is Lebesgue
measure.



Given a set A ∈ S we let τA be the time the chain first enters A, i.e.,

τA = inf{n ≥ 1 : Xn ∈ A} (7.31)

And we let ηA be the number of times the chain visits A, i.e.,

ηA =
∞∑
n=1

1A(Xn) (7.32)

Note that ηA can be infinite.

Definition 11 Let Xn be a ψ irreducible Markov chain. The chain is recurrent if for all
A ∈ S with ψ(A) > 0 we have Ex[ηA] = ∞ for all x ∈ A.

In the discrete case if a state is recurrent, then the probability we return to the state is 1.
Once we have returned the probability we will return again is still 1, and so on. So with
probability one we will return infinitely many times. So ηA = 1 with probability one. The
above definition is weaker than this. In particular we will have Ex[ηA] = ∞ if Px(ηA = ∞) is
non-zero but less than 1. To rule out some pathologies we will need a stronger notion of
recurrent for our convergence theorems.

Definition 12 The chain is Harris recurrent if there is a measure ψ such that for A ∈ S with
ψ(A) > 0 and all x ∈ A we have Px[τA <∞] = 1 for all x ∈ A.

Definition 13 A σ-finite measure π is invariant for a Markov chain with transition kernel K
such that

π(B) =
∫
S
K(x,B)π(dx), ∀B ∈ S (7.33)

(Note that we do not require that it be a probability measure or even that it is a finite
measure). If there is an invariant measure which is a probability measure then we say the
chain is positive recurrent.

Note: Robert and Casella say just “positive” instead of “positive recurrent.”

Theorem 10 Every recurrent chain has an invariant σ-finite measure. It is unique up to a
multiplicative constant.



Example: For random walk Lebesgue measure is an invariant measure.

Example: Consider the AR(1) example when the ǫn have a standard normal distribution.
We look for a stationary distribution with a normal distribution with mean µ and variance σ2.
If Xn is N(µ, σ2) then Xn+1 = θXn + ǫn is N(θµ, θ2σ2 + 1). So it will be stationary only if
µ = θµ and σ2 = θ2σ2 + 1. This is possible only if |θ| < 1, in which case µ = 0 and
σ2 = 1/(1− θ2).

Proposition 6 If the chain is positive recurrent then it is recurrent.

A recurrent chain that is not positive recurrent is called null recurrent.

There is an analog of detailed balance if the transition kernel is given by a density, i.e., the
state space is a subset of Rd and for all x

K(x,A) =
∫
A
k(x, y) dy (7.34)

for A ∈ S.

Definition 14 A chain for which the transition kernel is given by a density satisfies detailed
balance if there is a non-negative function π(x) on S such that

π(y)k(y, x) = π(x)k(x, y), ∀x, y ∈ S (7.35)

Proposition 7 If the chain satisfies detailed balance then π is a stationary measure.

Proof: Integrate the detailed balance equation over y with respect to Lebesgue measure.
QED

As we already note there will be MCMC algorithms in which the transition kernel is not given
by a density but is given by a lower dimensional density. There is an analog of detailed
balance in this case.

Markov chains with continuous state space can still be periodic. We give a trivial example.

Example: Let S = [0, 1] ∪ [2, 3]. Define K(x, ·) to be the uniform measure on [2, 3] if
x ∈ [0, 1] and the uniform measure on [0, 1] if x ∈ [2, 3]. Clearly if we start the chain in [0, 1],
then after n steps it will be somewhere in [0, 1] if n is even and somewhere in [2, 3] if n is odd.

The definition of period for a general state space is a bit technical and we will skip it.

As in the previous section there are two types of convergence theorems.



Theorem 11 If the chain is Haris positive and aperiodic then for every initial distbution µ,

lim
n→∞

||Kn(x, ·)− π||TV = 0 (7.36)

where || ||TV is the total variation norm.

Explain the total variation norm

Theorem 12 (Ergodic theorem) Suppose that the Markov chain has an invariant measure π.
Then the following two statements are equivalent.
(i) The chain is Harris recurrent.
(ii) For all f, g ∈ L1(π) with

∫
S g(x)dπ(x) 6= 0 we have

lim
n→∞

1

n

∑n
k=1 f(Xk)

1

n

∑n
k=1 g(Xk)

=

∫
S f(x)dπ(x)∫
S g(x)dπ(x)

(7.37)

Corollary If the Markov chain is Harris recurrent and has an invariant probability measure
π, then for all f ∈ L1(π) we have

lim
n→∞

1

n

n∑
k=1

f(Xk) =
∫
S
f(x)dπ(x) (7.38)


