
Chapter 8

Markov chain Monte Carlo

8.1 The key idea of MCMC

We start with a state space S and a probability density π(x) on it. Our goal is to come up
with a Markov chain on this state space that has π(x) as its invariant distribution. If the
chain is recurrent, then the ergodic theorem says that we can compute (approximately) the
expected value of a function F (x) on the state space by running the chain for along time and
taking the long time average of F (x) along the sequence of states that we generate. We start
with two very simple examples to illustrate the idea of MCMC. One is discrete, one
continuous.

Example: Fix an integer k and let S be the set of permutations with on {1, 2, · · · , k}. Let π
be the uniform measure on S. We want to construct a Markov chain on S with π as the
stationary measure. (There are many ways to do this.) Our algorithm is as follows. We pick
two integers i, j ∈ {1, 2, · · · , k}. The choice is random with the uniform distribution on the set
of k2 possibilities. Let σij be the permutation that interchanges i and j and leaves the other
elements fixed. Then if σ is the state at time n, the state at time n+ 1 is σij◦σ.

Show that it satisfies detailed balance.

Show it is irreducible.

Remark: This example illustrates the following observation. If p(x, y) is symmetric, i.e.,
p(x, y) = p(y, x), then the stationary distribution is the uniform distribution.

Example: The state space is the real line. Let π(x) be the density of the standard normal.
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We want to cook up a Markov chain with this as the stationary distribution. We take

k(x, y) = c(σ) exp(−
1

2
(y −

1

2
x)2/σ2) (8.1)

Show that π(x) is the stationary distribution if σ2 = 3/4.

8.2 The Metropolis-Hasting algorithm

We want to generate samples from a distribution

π(x) =
1

Z
p(x) (8.2)

where x ∈ X. The set X could be a subset of Rd in which case π(x) is a density and the
measure we want to sample from is π(x) times Lebesgue measure on Rd. Or X could be finite
or countable in which case the distribution is discrete and the measure we want to sample
from assigns probability π(x) to x. The function p(x) is known and Z is a constant which
normalizes it to make it a probability distribution. Z may be unknown.

Let q(x, y) be some transition function for a Markov chain with state space S. If S is discrete
then q(x, y) is a transition probability, while if S is continuous it is a transition probability
density. We will refer to q as the proposal density or distribution. q(x, y) is often written as
q(y|x). We assume that q(x, y) = 0 if and only if q(y, x) = 0 We define a function called the
acceptance probability by

α(x, y) = min{
π(y)q(y, x)

π(x)q(x, y)
, 1} (8.3)

Since π(y)/π(x) = p(y)/p(x), the possibly unknown constant Z is not needed to compute the
acceptance probability. Note that α(x, y) is always in [0, 1]. If one of the terms in the
denominator above is zero, we define α(x, y) to be zero. It really doesn’t matter how we
define α(x, y) in this case. Explain.

Then we define a Monte Carlo chain as follows.

Metropolis-Hasting algorithm Suppose the chain is in state Xn at time n. We generate Y
from the distribution q(y|Xn). Next generate U from the uniform distribution on [0, 1]. If
U ≤ α(Xn, Y ) then we set Xn+1 = Y . Otherwise we set Xn+1 = Xn.

If the proposal distribution is symmetric, meaning that q(y, x) = q(x, y), then the acceptance
probability function simplifies to

α(x, y) = min{
π(y)

π(x)
, 1} (8.4)



This is sometimes called just the Metropolis algorithm. This case was studied by Metropolis.
Hasting generalized to non-symmetric q.

The above description of the algorithm implicitly defines the transition kernel for the Markov
chain. We make it more explicit. In the discrete case for x 6= y the transition probability is

p(x, y) = q(x, y)α(x, y) (8.5)

and

p(x, x) = q(x, x)α(x, x) +
∑

y

[1− α(x, y)]q(x, y) (8.6)

The first term comes from accepting the proposed state x and the second term (with the sum
on y) comes from proposing y and rejecting it.

In the continuous case the transition kernel K(x, ·) is a mixture of a continuous measure and
a point mass.

K(x,A) =
∫

A
α(x, y)q(x, y) dy + 1x∈A

∫

S
[1− α(x, y)]q(x, y) dy (8.7)

Remark: This sort of looks like acceptance-rejection. We generate a proposed state Y and
accept it with probability α(Xn, Y ), reject it otherwise. But it is not the same as the
acceptance-rejection algorithm. One crucial difference is that in the acceptance-rejection
algorithm when we reject a proposed value the number of samples does not increase. In
Metropolis-Hasting when we reject Y the chain still takes a time step. When this happens
there are two consecutive states in X0, X1, X2, · · · that are the same. So in the time average

1

n

n
∑

k=1

f(Xk) (8.8)

there can be terms that are the same.

Theorem 1 π(x) is the stationary distribution of the Markov chain of the Metropolis-Hasting
algorithm.

Proof: We will eventually consider the discrete and continuous cases separately, but first we
prove the following crucial identity which holds in both cases.

π(x)α(x, y)q(x, y) = π(y)α(y, x)q(y, x), ∀x, y ∈ S (8.9)



To prove it we consider two cases: α(x, y) = 1 and α(y, x) = 1. (It is possible these cases
overlap, but that does not affect the proof.) The cases are identical. So we assume
α(x, y) = 1. Then

α(y, x) =
π(x)q(x, y)

π(y)q(y, x)
(8.10)

The above identity follows.

Now consider the discrete case, i.e., the state space is finite or countable. In this case π(x) is
a probability mass function. The transition function is

p(x, y) = α(x, y)q(x, y) (8.11)

We prove that π(x) is the stationary distribution by showing it satisfies detailed balance. Let
x and y be distinct states. (If x = y it is trivial to verify the detailed balance equation.) So
we must show π(x)p(x, y) = π(y)p(y, x). This is immediate from (8.9).

Now consider the continuous case. So the state space is a subspace of Rd and π(x) is a density
with respect to Lebesgue measure on Rd. Note that the transition kernel is now a mix of a
continuous and discrete measure. So trying to use detailed balance is problematic. We just
verify the stationary equation. So let A ⊂ Rd. We must show

∫

A
π(x)dx =

∫

K(x,A)π(x)dx (8.12)

The right side is the sum of two terms - one is from when we accept the proposed new state
and one from when we reject it. The acceptance term is

∫
[
∫

A
α(x, y)q(x, y)dy

]

π(x)dx (8.13)

Given that we are in state x and that the proposed state is y, the probability of rejecting the
proposed state is 1− α(x, y). So the probability we stay in x given that we are in x is

∫

[1− α(x, y)]q(x, y)dy (8.14)

So the rejection term is
∫

A
π(x)

[
∫

[1− α(x, y)]q(x, y)dy
]

dx (8.15)

Note that the integral over x is only over A since when we reject we stay in the same state. So
the only way to end up in A is to have started in A. Since

∫

q(x, y)dy = 1, the above equals

∫

A
π(x)dx−

∫

A
π(x)

[
∫

α(x, y)]q(x, y)dy
]

dx (8.16)



So we need to show
∫

[
∫

A
α(x, y)q(x, y)dy

]

π(x)dx =
∫

A
π(x)

[
∫

α(x, y)]q(x, y)dy
]

dx (8.17)

In the right side we do a change of variables to interchange x and y. So we need to show

∫
[
∫

A
α(x, y)q(x, y)dy

]

π(x)dx =
∫

A
π(y)

[
∫

α(y, x)]q(y, x)dx
]

dy (8.18)

If we integrate (8.9) over x ∈ X and y ∈ A we get the above. QED
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To apply our convergence theorem for Markov chains we need to know that the chain is
irreducible and if the state space is continuous that it is Harris recurrent.

Consider the discrete case. We can assume that π(x) > 0 for all x. (Any states with π(x) = 0
can be deleted from the state space.) Given states x and y we need to show there are states
x = x0, x1, · · · , xn−1, xn = y such that α(xi, xi+1)q(xi, xi+1) > 0. If q(xi, xi+1) > 0 then
α(xi, xi+1) > 0. So it is enough to find states so that q(xi, xi+1) > 0. In other words we need
to check that the transition function q(x, y) is irreducible.

Now consider the continuous case. We want to show that the chain is π-irreducible. We start
with a trivial observation. If q(x, y) > 0 for all x, y, then the chain is π-irreducible since for
any x and any set A with

∫

A π(x)dx > 0, the probability that if we start in x and reach A in
just one step will be non-zero. This condition is too restrictive for many cases. Here is a more
general sufficient condition.

Proposition 1 Suppose that the state space S is connected in the following sense. Given
δ > 0 and x, y ∈ S there exists states y0 = x, y1, · · · , yn−1, yn = y such that |yi − yi−1| < δ for
i = 1, 2, · · · , n and the sets Bδ(yi) ∩ S have non-zero Lebesgue measure for i = 0, 1, 2, · · · , n.
Assume there is an ǫ > 0 such that |x− y| < ǫ implies q(x, y) > 0. Then the
Metropolis-Hasting chain is irreducible with respect to Lebesgue measure on S.

Proof: Let x0 ∈ S and let A ⊂ S have non-zero Lebesgue measure. Pick yn ∈ A such that the
set Bδ(yn) ∩ A has non-zero Lebesgue measure. (This is possible since A has non-zero
Lebesgue measure.) Let y1, y2, · · · , yn−1 be states as in the above sense of connectedness with



δ = ǫ/3. We will show Kn(x0, A) > 0. We do this by only considering trajectories
x0, x1, x2, · · · , xn such that |xi − yi| < δ for i = 1, · · · , n. We further require xn ∈ A. And
finally we only consider trajectories for which all the proposed jumps were accepted. The
probability of this set of trajectories is given by the integral of

q(x0, x1)α(x0, x1)q(x1, x2)α(x1, x2) · · · q(xn−1, xn)α(xn−1, xn) (8.19)

where the region of integration is given by the constraints |xi − yi| < δ for i = 1, 2, · · · , n− 1
and xn ∈ Bδ(yn) ∩ A. Since |yi−1 − yi| < δ the triangle inequality implies |xi−1 − xi| < 3δ = ǫ.
So we have q(xi−1, xi) > 0. Note that q(xi−1, xi) > 0 implies α(xi−1, xi) > 0. So the integrand
is strictly positive in the integral. The integral is over a set of non-zero Legesgue measure, so
the integral is non-zero. QED

Finally we have

Proposition 2 If the Metropolis-Harris chain is π-irreducible then it is Harris recurrent.

A proof can be found in Robert and Casella. This is lemma 7.3 in their book in section 7.3.2.

We do not need to know the chain is aperiodic for our main use of it, but it is worth
considering. If U > α(Xn, Y ) then we stay in the same state. This happens with probability
1− α(Xn, Y ). So as long as α(x, y) < 1 on a set with non-zero probability (meaning what
???), the chain will be aperiodic. If α(x, y) = 1 for all x, y, then π(y)q(y, x) = π(x)q(x, y).
But this just says that π satisfies detailed balance for the transition function q. So we would
not be doing Metropolis-Hasting anyway. In this case we would need to study q to see if it
was aperiodic.

Example (normal distribution): Want to generate samples of standard normal. Given
Xn = x, the proposal distribution is the uniform distribution on [x− 1, x+ 1]. So

q(x, y) =

{

1
2

if |x− y| ≤ 1,
0, if |x− y| > 1,

(8.20)

We have

α(x, y) = min{
π(y)

π(x)
, 1} =

1

2
min{exp(−

1

2
y2 +

1

2
x2), 1} (8.21)

=
1

2

{

exp(−1
2
y2 + 1

2
x2) if |x| < |y|,

1 if |x| ≥ |y|
(8.22)

Example (permutations): Consider permutations σ of {1, 2, · · · , k}. A permutation is a
bijective function on {1, 2, · · · , k}. Instead of considering the uniform distribution on the set



of permutations as we did in an earlier example we consider a general probability measure.
We write it in the form

π(σ) =
1

Z
exp(w(σ)) (8.23)

w(σ) can be any function on permutation and can take on positive and negative values. An
example of a possible w is the following. Let s(σ) be the number of elements that are fixed by
σ. Then let w(σ) = αs(σ). So depending on the sign of α we either favor or disfavor
permutations that fix a lot of elements. The proposal distribution is to choose two distinct i, j
uniformly and multiply the current permuation by the tranposition (i, j).

α(σ, σ′) = min{
π(σ′)

π(σ)
, 1} = min{exp(w(σ′)− w(σ)), 1} (8.24)

(8.25)

Note that we only need to compute the change in w(). For “local” w this is a relatively cheap
computation.

Example (Ising model): Fix a finite subset Λ of the lattice Zd. At each site i ∈ Λ there is
a “spin” σi which takes on the values ±1. The collection σ = {σi}i∈Λ is called a spin
configuration and is a state for our system. The state space is {−1, 1}Λ. The Hamiltonian
H(σ) is a function of configurations. The simplest H is the nearest neighbor H:

H(σ) =
∑

<ij>

σiσj (8.26)

We then define a probability measure on the spin configurations by

π(σ) =
1

Z
exp(−βH(σ)) (8.27)

The proposal distribution is defined as follows. We pick a site i uniformly from Λ. Then we
flip the spin at i, i.e., we replace σi by −σi. So we only propose transitions between
configurations that only only differ in one site. So q(σ, σ′) = 1/|Λ| when the spin
configurations differ at exactly on site and it is zero otherwise. For two such configurations σ
and σ′ the acceptance probability is

α(σ, σ′) = min{
π(σ′)

π(σ)
, 1} = min{exp(−β[H(σ′)−H(σ)], 1} (8.28)

Note that there is lots on cancellation in the differece of the two Hamiltonians. This
computation takes a time that does not depend on the size of Λ.

Example: QFT



8.3 The independence sampler

The independence sampler is a special case of the Metropolis-Hasting algorithm. In the
independence sampler the proposal distribution does not depend on x, i.e., q(x, y) = g(y). So
the acceptance probability becomes

α(x, y) = min{
π(y)g(x)

π(x)g(y)
, 1} (8.29)

Suppose that there is a constant C such that π(x) ≤ Cg(x). In this setting we could do the
acceptance-rejection algorithm. It will generate independent samples of π(x) and the
acceptance rate will be 1/C. By contrast the independence sampler will generate dependent
samples of π(x).
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Proposition 3 Consider the independence sampler with proposal distribution g(x) and
stationary distribution π(x). Suppose there is a constant C such that π(x) ≤ Cg(x) for all
x ∈ S. Let π0(x) be any initial distibution and let πn(x) be the distribution at time n. Then

||πn − π||TV ≤ 2(1−
1

C
)n (8.30)

Proof: We will only consider the case that the initial distribution is absolutely continuous
with respect to Lebesgue measure. So the initial distribution is π(x)dx. Note that in this case
the subsequent distributions πn will be absolutely continuous with respect to Lebesgue
measure. Explain this.

For convenience let ǫ = 1
C
. So our bound can be rewritten as g(x) ≥ ǫπ(x). Since

q(x, y) = g(y), we have

α(x, y)q(x, y) = min{
π(y)g(x)

π(x)g(y)
, 1}g(y) = min{

π(y)g(x)

π(x)
, g(y)} (8.31)

≥ min{
π(y)ǫπ(x)

π(x)
, ǫπ(y)} = ǫπ(y) (8.32)

Let ρ(x) be a probability density. The transition kernel takes it to another density, and we
will denote this new density by Kρ. So K is a linear operator on integrable functions on Rd.



Let P be the linear operator which maps a probability density ρ(x) to the probability density
π(x). So P is a projection. For a general integrable function

(Pρ)(x) = π(x)
∫

X
ρ(y)dy (8.33)

Our previous bound shows that for any probability density ρ, Kρ− ǫPρ is a non-negative
function. Its integral is 1− ǫ. So if we define another linear operator by

R =
1

1− ǫ
[K − ǫP ] (8.34)

then R will map a probability density into another probability density. Note that
K = ǫP + (1− ǫ)R. A straightforward induction argument shows that

Kn =
n
∑

k=1

Kn−kP (1− ǫ)k−1Rk−1 + (1− ǫ)nRn (8.35)

Note that Pρ = π for any probability distribution ρ, and Kπ = π. So KjPρ = π for any j. So
for any initial distribution π0,

πn = Knπ0 = π
n
∑

k=1

(1− ǫ)k−1 + (1− ǫ)nRnπ0 = [1− (1− ǫ)n]π + (1− ǫ)nRnπ0 (8.36)

So

πn − π = −(1− ǫ)nπ + (1− ǫ)nRnπ0 (8.37)

Since Rnπ0 is a probability density, the L1 norm of the above is bounded by 2(1− ǫ)n. QED

8.4 The Gibbs sampler

In this section change notation and let f(x) denote the distribution we want to sample from,
in place of our previous notation π(x).

We first consider the two-stage Gibbs sampler. We assume that the elements of the state
space are of the form (x, y). The probability distribution we want to sample from is f(x, y).
Recall that the marginal distributions of X and Y are given by

fX(x) =
∫

f(x, y) dy, fY (y) =
∫

f(x, y) dx (8.38)

and the conditional distributions of X given Y and Y given X are

fY |X(y|x) =
f(x, y)

fX(x)
, fX|Y (x|y) =

f(x, y)

fY (y)
(8.39)



Note that if we only know f(x, y) up to an overall constant, we can still compute fY |X(y|x)
and fX|Y (x|y).

The two-stage Gibbs sampler Given that we are in state (Xn, Yn), we first generate Yn+1

from the distribution fY |X(·|Xn). Then we generate Xn+1 from the distribution fX|Y (·|Yn+1).
These two stages make up one time step for the Markov chain. So the transition kernel is

K(x, y; x′, y′) = fY |X(y
′|x)fX|Y (x

′|y′) (8.40)

Proposition 4 f(x, y) is the stationary distribution of the two-stage Gibbs sampler.

Proof: We just show that Kf = f .

(Kf)(x′, y′) =
∫ ∫

f(x, y)K(x, y; x′, y′)dxdy (8.41)

=
∫ ∫

f(x, y)fY |X(y
′|x)fX|Y (x

′|y′)dxdy (8.42)

=
∫ ∫

f(x, y)
f(x, y′)

fX(x)

f(x′, y′)

fY (y′)
dxdy (8.43)

=
∫

fX(x)
f(x, y′)

fX(x)

f(x′, y′)

fY (y′)
dx (8.44)

=
∫

f(x, y′)
f(x′, y′)

fY (y′)
dx (8.45)

= f(x′, y′) (8.46)

QED

Remark: The two-stage Gibbs sampler does not satisfy detailed balance in general.

Example: (Bivariate normal) We consider the bivariate normal (X, Y ) with joint density

f(x, y) = c exp(−
1

2
x2 −

1

2
y2 − αxy) (8.47)

where α is a parameter related to the correlation of X and Y . Argue that

fY |X(y|x) = c(x) exp(−
1

2
(y + αx)2) (8.48)

So for the first stage in the Gibbs sampler, we generate Yn+1 from a standard normal
distribution with mean −αXn. We have

fX|Y (x|y) = c(y) exp(−
1

2
(x+ αy)2) (8.49)



So for the second stage, we generate Xn+1 from a standard normal distribution with mean
−αYn+1.

We now consider the multi-stage Gibbs sampler. Now suppose that the points in the state
space are of the form x = (x1, x2, · · · , xd). We need to consider the conditional distribuion of
Xi given all the other Xj. To keep the notation under control we will write

fXi|X1,···,Xi−1,Xi+1,···,Xd
(xi|x1, · · · , xi−1, xi+1, · · · , xd) = fi(xi|x1, · · · , xi−1, xi+1, · · · , xd) (8.50)

Again we emphasize that we can compute these conditional distributions even if we only know
f(x1, · · · , xd) up to an unknown constant.

Multi-stage Gibbs sampler: The algorithm has d stages and proceeds as follows.
(1) Given (Xn

1 , · · · , X
n
d ) we sample Xn+1

1 from f1(·|X
n
2 , · · · , X

n
d ).

(2) Then we sample Xn+1
2 from f2(·|X

n+1
1 , Xn

3 , · · · , X
n
d ).

(j) Continuing we sample Xn+1
j from fj(·|X

n+1
1 , ·, Xn+1

j−1 , X
n
j+1, · · · , X

n
d .

(p) In the last step we sample Xn+1
d from fd(·|X

n+1
1 , · · ·Xn+1

d−1 ).

Before we show that the stationary distribution of this algorithm is f , we consider some
variations of the algorithm. Let Kj be the transition kernel corresponding to the jth step of
the multi-stage Gibbs sampler. So

Kj(x1, x2, · · · , xp; x
′
1, x

′
2, · · · , x

′
d) = fj(x

′
j|x1, x2, · · · , xj−1, xj+1, · · · , xp)

p
∏

i=1:i 6=j

δ(xi − x′
i) (8.51)

If we think of Kj as a linear operator, then the multi-stage Gibbs sampler is KdKd−1 · · ·K2K1.

Here is another Gibbs sampler which for lack of a standard name we will call the randomized
Gibbs sampler. Fix some probability distribution pi on {1, 2, · · · , d}. Given that we are in
state (Xn

1 , · · · , X
n
d ), we first pick i ∈ {1, 2, · · · , d} according to this distribution. Then we

sample Xn+1
i from fi(·|X

n
1 , ·, X

n
i−1, X

n
i+1, · · · , X

n
d ). For l 6= i, Xn+1

l = Xn
l . The transition

kernel for this algorithm is

K =
d

∑

i=1

piKi (8.52)

Proposition 5 f(x1, x2, · · · , xd) is the stationary distribution of the multi-stage Gibbs
sampler and of the randomized Gibbs sample for any choice of the distribution pi.
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Proof: We only need to show that for all j, Kjf = f . So we compute:

(Kjf)(x
′
1, x

′
2, · · · , x

′
d) (8.53)

=
∫

· · ·
∫

f(x1, x2, · · · , xd)Kj(x1, x2, · · · , xd; x
′
1, x

′
2, · · · , x

′
d)dx1dx2 · · · dxd (8.54)

=
∫

· · ·
∫

f(x1, x2, · · · , xd)fj(x
′
j|x1, x2, · · · , xj−1, xj+1, · · · , xd)

d
∏

i=1:i 6=j

δ(xi − x′
i) (8.55)

= fj(x
′
j|x

′
1, x

′
2, · · · , x

′
j−1, x

′
j+1, · · · , x

′
d)

∫

f(x′
1, x

′
2, · · · , x

′
j−1, xj, x

′
j+1, x

′
d)dxj (8.56)

= f(x′
1, x

′
2, · · · , x

′
d) (8.57)

Note that the random stage Gibbs sampler has f as the stationary distrbution for any choice
of the pi. We need to take all pi > 0 to have any chance that the chain is irreducible. The
simplest choice for the pi is to use the uniform distribution on {1, 2, · · · , d}. Why would we do
anything else? In the following example we will see a case where we might want to use a
non-uniform distribution.

Caution: There are lots of variations on the Gibbs sampler, but one should be careful. Here
is one that does not work.

WRONG two-stage Gibbs sampler: Given that we are in state (Xn, Yn), we first
generate Yn+1 from the distribution fY |X(·|Xn). Then we generate Xn+1 from the distribution
fX|Y (·|Yn). These two stages make up one time step for the Markov chain. So the transition
kernel is

K(x, y; x′, y′) = fY |X(y
′|x)fX|Y (x

′|y) (8.58)

Note that the difference with the correct two-stage Gibbs sampler is that we we generate
Xn+1 from fX|Y (·|Yn) rather than fX|Y (·|Yn+1).

Here is an example to illustrate how the above algorithm is wrong. Take f(x, y) to be the
uniform distribution on the three points (0, 0), (0, 1), (1, 0). Explain this.

Remark: The d-stage Gibbs sampler requires that the states have the structure
(x1, x2, · · · , xd). However this does mean that the state space has to be a subset of Rd. Some
of the xi could be vectors or even something stranger.

Example: We consider the Ising model that we considered in a previous example. The
integer d is not the number of dimensions. It is the number of sites in Λ. For j ∈ Λ, fj is the



conditional distribution of σj given the values of all the other spins. We compute this in the
usual way (joint density over marginal) to get

fj(σj|σΛ\j) =
exp(−βH(σ))

∑

sj exp(−βH(σ̂))
(8.59)

where sj is summed over just −1, 1 and σ̂ equals σi for all sites i 6= j and equals sj at site j.
The algorithm applies to any H, but there are some nice cancellations if H is “local.” We
illustrate this by considering the nearest neighbor H. Any term in H that does not involve
site j cancels in the numerator and the denominator. The result is just

fj(σj|σΛ\j) =
exp(−βσj

∑

k:|k−j|=1 σk)

exp(−β
∑

k:|k−j|=1 σk) + exp(β
∑

k:|k−j|=1 σk)
(8.60)

So computing fj takes a time that is O(1), independent of the size of Λ. But just how fast the
algorithm mixes depends very much on the size of Λ and on β. For the multi-stage algorithm
each time steps take a time of order |Λ|. For the random-stage algorithm each time step only
takes a time O(1), but it will take O(|Λ|) times steps before we have changed a significant
fraction of the spins.

Now suppose we want to compute the expected value of F (σ) in the Ising model and F (σ)
only depends on a few spins near the center of Λ. Then we may want to choose the
distribution pi so that the sites near the center have higher probability than the sites that are
not near the center.

Remark: As the example above shows, d is not always the “dimension” of the model.

Example: (loosely based on example 6.6 in Rubenstein and Kroese, p. 177) For
i = 1, 2, · · · , d, let pi(xi) be a discrete probability function on the non-negative integers. If
X1, X2, · · · , Xd were independent with these distributions, then the joint distribution would
be just the product of the pi(xi). This is trivial to simulate. We are interested in something
else. Fix a positive integer m. We restrict the sample sample to the d-tuples of non-negative
integers x1, x2, · · · , xd such that

∑d
i=1 xi = m. We can think of this as the conditional

distribution of X1, · · · , Xd given that
∑

i Xi = m. So we want to simulate the joint pdf given
by

f(x1, · · · , xd) =
1

Z

d
∏

i=1

pi(xi) (8.61)

when
∑

xi = m and f() = 0 otherwise. The constant Z is defined by ... Since
Xd = m−

∑d−1
i=1 Xi, we can work with just X1, X2, · · · , Xd−1. Their joint distribution is

f(x1, · · · , xd−1) =
1

Z
pd(m−

d−1
∑

i=1

xi)
d−1
∏

i=1

pi(xi) (8.62)



for x1, · · · , xd−1 whose sum is less than or equal to m. Then their sum is greater than m,
f(x1, · · · , xd−1) = 0. All we need to run the Gibbs sampler are the conditional distributions of
Xj given the other Xi. They are given by

fj(xj|x1, · · · , xj−1, xj+1, · · · , xd−1) ∝ fj(xj)fd(m−
d−1
∑

i=1

xi) (8.63)

If we let m′ = m−
∑d−1

i=1:i 6=j xi, then the right side is equal to fj(xj)fd(m
′ − xj). We need to

compute the constant to normalize this, but that takes only a single sum on xj. (And for
some fj, fd can be done explicitly.)

Irreducibility: brief discussion of irreducibility for the Gibbs sample. Gap in notes here.

8.5 Slice sampler

The slice sampler is in some sense a special case of the Gibbs sampler. Suppose we want to
sample from f(x) where x ranges over X. We consider a new distribution: the new state
space is a subspace of X ×R, namely,

S = {(x, u) : 0 ≤ u ≤ f(x)} (8.64)

This can be thought of as the area under the graph of f . The new distribution is the uniform
measure on S. The key observation is that with this distribution on (X,U), the marginal
distribution of X is f(x). So if we can construct a Markov chain (Xn, Un) with the uniform
measure on S as its stationary measure then we can just look at Xn and long time averages of
random variables on X will converge to their expectation with respect to f(x). We use the
two-stage Gibbs sampler. So we need the conditional distributions fU |X(u|x) and fX|U(x|u).
They are both uniform. More precisely, the distribution of U given X = x is uniform on
[0, f(x)], and the distribution of X given U = u is uniform on {x : u ≤ f(x)}.

Slice sampler (single slice) Given that we are in state (Xn, Un), we first generate Un+1

from the uniform distribution on [0, f(Xn)]. Then we generate Xn+1 from the uniform
distribution on {x : Un+1 ≤ f(x)}.

Remark: Suppose that the density we wish to simulate is given by cf(x) where c is an
unknown constant. We can still take

S = {(x, u) : 0 ≤ u ≤ f(x)} (8.65)

and put the uniform distribution on S. The density function is 1
c
1S. The constant c is

unknown, but that will not matter. The marginal density of X is still f(x).



Example: Let f(x) = ce−x2/2, the standard normal. Given (Xn, Un) it is trivial to sample
Un+1 uniformly from [0, f(Xn)]. Next we need to sample Xn+1 uniformly from
{x : Un+1 ≤ f(x)}. This set is just the interval [−a, a] where a is given by Un+1 = f(a). We
can trivially solve for a.

The first step of the slice sampler, generating Un+1, is always easy. The second step,
generating Xn+1, may not be feasible at all since the set {x : Un+1 ≤ f(x)} may be very
complicated. For example suppose we want to sample

f(x) = c
1

1 + x2
exp(−x2/2) (8.66)

The set will be an interval, but finding the endpoints requires solving an equation like
exp(−x2/2)/(1 + x2) = u. This could be done numerically, but the set could be even more
complicated. There is a generalization that may work even when this second step is not
feasible for the single slice sampler.

Assume that f(x) can be written in the form

f(x) =
d
∏

i=1

fi(x) (8.67)

where the fi(x) are non-negative but need not be probability densities. We then introduce a
new random variable (sometimes called auxillary variables) for each fi. So the new state
space is a subspace of X ×Rd and is given by

S = {(x, u1, u2, · · · , ud) : 0 ≤ ui ≤ fi(x), i = 1, 2, · · · , d} (8.68)

We use the uniform distribution on S. The key observation is that if we integrate out
u1, u2, · · · , ud, we just get f(x). So the marginal distribution of X will be f(x). For the
Markov chain we use the d+ 1 dimensional Gibbs sample.

Example: Let

f(x) = c
1

1 + x2
exp(−x2/2) (8.69)

Let

f1(x) =
1

1 + x2
, f2(x) = exp(−x2/2) (8.70)

Note that we are dropping the c. We sample Un+1
1 uniformly from [0, f1(X

n)]. Then we
sample Un+1

2 uniformly from [0, f2(X
n)]. Finally we need to sample Xn+1 uniformly from

{x : Un+1
1 ≤ f1(x), U

n+1
2 ≤ f2(x)} (8.71)



This set is just an interval with endpoints that are easily computed.

Stop - Wed, March 23

The slice sampler can be used when the initial distribution f(x) is discrete as the next
example shows.

Example: Consider the density f(x) = c exp(−αx2) where α > 0 and x = 0, 1, 2, · · ·. Note
that the constant c cannot be computed analytically. We would have to compute it
numerically. For the slice sampler we can just drop c. The first stage is to generate Un+1

uniformly from [0, f(Xn)]. Then we generate Xn+1 uniformly from the set of non-negative
integers k such that Un+1 ≤ f(k).

8.6 Bayesian statistics and MCMC

We start with a triviality which is often called Bayes rule. Given two random variables (which
can be random vectors), we have

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, fY |X(y|x) =

fX,Y (x, y)

fX(x)
(8.72)

So

fY |X(y|x) =
fX|Y (x|y)fY (y)

fX(x)
(8.73)

This is often written as

fY |X(y|x) ∝ fX|Y (x|y)fY (y) (8.74)

with the understanding that the constant of proportionality depends on x. In Bayesian
statistics it is often written in the more abbreviated form

f(y|x) ∝ f(x|y)f(y) (8.75)

“This particular style of notation is typical in Bayesian analysis and can be of great
descriptive value, despite its apparent ambiguity” - Rubinstein and Kroese.



Now suppose we have a probability distribution for x, which is typically a vector, that
depends on some parameters θ = (θ1, · · · , θd). Often the vector x is a sample x1, x2, · · · , xn

that comes from performing some experiment n times. We don’t know θ. In statistics we
want to use the value of x that results from our experiment to estimate the unknown
parameters θ. The Bayesian statistician puts a probability distribution on θ, f(θ), that is
supposed to encode all the information we have about how likely we think different values of θ
are before we do the experiment. f(θ) is called the prior distribution. Now we do the
experiment, and so we have a particular value for x. We want to replace the prior distribution
on θ by a distribution that incorporates the knowledge of x. The natural distribution is
f(θ|x). This is called the posterior distribution of θ. By Bayes rule

f(θ|x) ∝ f(x|θ)f(θ) (8.76)

where the constant of proportionality depends on x. The conditional density f(x|θ) is called
the likelihood. We typically know this function quite explicitly. For example, if f(x|θ) comes
from independent repetitions of the same experiment, then

f(x|θ) = f(x1, x2, · · · , xn|θ) =
n
∏

i=1

fX(xi|θ) (8.77)

where fX(x|θ) is the distribution of X for one performance of the experiment. So Bayes rule
says

f(θ|x) ∝

[

n
∏

i=1

fX(xi|θ)

]

f(θ) (8.78)

Given the data x this gives the joint distribution of the parameters θ1, · · · , θd. To run a Gibbs
sampler we need the conditional distribution of each θi given the other θj, j 6= i. The constant
of proportionality in Bayes rule is often impossible to compute analytically, but this does not
matter for the Gibbs sampler.

Example : We have a coin with probability θ of getting heads. However, we do not know θ.
We flip it n times, let X1, X2, · · · , Xn be 1 for heads, 0 for tails. If we are given a value for θ,
then the distribution of X1, X2, · · · , Xn is just

f(x|θ) =
n
∏

i=1

θxi(1− θ)1−xi = θs(1− θ)n−s (8.79)

where x is short for x1, x2, · · · , xn and s is defined to be
∑n

i=1 xi. If we have no idea what θ is,
a reasonable choice for the prior distribution for θ is to make it uniform on [0, 1]. Now
suppose we flip the coin n times and use the resulting “data” x1, · · · , xn to find a better
distribution for θ that incorporates this new information, i.e., find the posterior distribution.
The posterior is given by

f(θ|x) ∝ f(x|θ)f(θ) = θs(1− θ)n−s1[0,1](θ) (8.80)



where s =
∑n

i=1 Xi. If n is large then s will be large too and this density will be sharply
peaked around s/n.

In this example above the formula for the posterior is quite simple and in particular it is
trivial to compute the normalizing constant. In many actual applications this is not the case.
Often θ is multidimensional and so just computing the normalizing constant requires doing a
multidimensional integral which may not be tractable. We still want to be able to generate
samples from the posterior. For example we might want to compute the mean of θ from the
posterior and maybe find confidence interval for it. We can try to use MCMC, in particular
the Gibbs sampler, to do this.

Example: This is similar to the coin example above but with more parameters. We have a
die with probabilities θ1, θ2, · · · , θ6 of getting 1, 2, · · · , 6. So the sum of the θi must be 1. We
role the die n times and let x1, x2, · · · , xn be the numbers we get. So the xi take values in
{1, 2, 3, 4, 5, 6}. Putting a prior distribution on the θi is a little tricky since we have the
constraint that they must sum to 1. Here is one approach. We would like to assume the die is
close to being fair and we have no prior reason to think that a particular number is more
likely than any other number. Take φ1, · · · , φ6 to be independent and identically distributed
with distribution g(φ) where φ is peaked around 1/6. So the joint distribution of the φi is
∏

i g(φi). Then we just set θi = φi/
∑

j φj. We now think of the φi as the parameters.

We have

f(x|θ) =
n
∏

i=1

θxi
=

6
∏

j=1

θ
nj

j (8.81)

and so

f(x|φ) = [
6

∑

j=1

φj]
−n

6
∏

j=1

φ
nj

j (8.82)

where nj is the number of xi equal to j. We have used the fact that
∑6

j=1 nj = n. So Bayes
rule says

f(φ1, · · · , φ6|x) ∝ [
6

∑

j=1

φj]
−n

6
∏

j=1

[φ
nj

j g(φj)] (8.83)

We would like to compute things like the expected value of each θi. This would give us an
idea of how unfair the die is and just how it is “loaded”. We do this by generating samples of
(φ1, · · · , φ6). We can use the Gibbs sampler. We need the conditional distribution of each φi

given the other φ. Up to a normalization constant this is

[φi + Φ]−n φni

i g(φi) (8.84)



where Φ =
∑

j 6=i φj.

Example: Zero-inflated poisson process - handbook p. 235.

Review Poisson proccesses, Poisson RV’s, and gamma distribution

Gamma(w, λ) has pdf

f(x) =
λw

Γ(w)
xw−1e−λx (8.85)

Hierarchical models: Suppose we have a parameter λ which we take to be random. For
example it could have a Gamma(α, β) distribution. Now we go one step further and make β
random, say with a Gamma(γ, δ) distribution. So

f(λ|β) = Gamma(α, β), (8.86)

f(β) = Gamma(γ, δ) (8.87)

and so the prior is

f(λ, β) = f(λ|β)f(β) = · · · (8.88)

Example The following example appears in so many books and articles it is ridiculuous. But
it is still a nice example. A nuclear power plant has 10 pumps that can fail. The data consists
of an observation time ti and the number of failures xi for each pump that have occured by
time ti.

A natural model for the times at which a single pump fail is a Poisson process with parameter
λ. We only observe the process at a single time, and the number of failures that have occured
by that time is a Possion random variable with parameter λti. One model would be to assume
that all the pumps have the same failure rate, i.e., the same λ. This is an unrealistic
assumption. Instead we assume that each pump has its own failure rate λi. The λi are
assumed to be random and independent, but with a common distribution. We take this
common distribution to be Gamma(α, β) where α is a fixed value but β is random with
distribution Gamma(γ, δ). γ and δ are numbers. The parameters θ here are λ1, · · · , λ10, β.
From now on we write λ1, · · · , λ10 as λ. Note that

f(λ, β) = f(λ|β)f(β) (8.89)

and

f(x|λ, β) = f(x|λ) (8.90)



pump 1 2 3 4 5 6 7 8 9 10
Number failures 5 1 5 14 3 19 1 1 4 22
observation time 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

Table 8.1:

and we have

f(x|λ) =
10
∏

i=1

[

(λiti)
xi

xi!
e−λiti

]

(8.91)

Bayes rule says

f(λ, β|x) ∝ f(x|λ, β)f(λ, β) (8.92)

= f(x|λ, β)f(λ|β)f(β) (8.93)

=
10
∏

i=1

[

(λiti)
xi

xi!
e−λiti

]

10
∏

i=1

Gamma(λi|α, β)Gamma(β|γ, δ) (8.94)

=
10
∏

i=1

[

(λiti)
xi

xi!
e−λiti

]

10
∏

i=1

[

βα

Γ(α)
λα−1
i e−λiβ

]

δγ

Γ(γ)
βγ−1e−δβ (8.95)

∝
10
∏

i=1

[

λxi+α−1
i e−λi(ti+β)

]

β10α+γ−1e−δβ (8.96)

where the constant of proportionality depends on the xi and ti and on the constants γ, δ.

We want to compute the posterior distribution of the parameters. We are particularly
interested in the mean of the distribution of the λi, i.e., the mean of Gamma(α, β). The mean
of this gamma distribution with fixed α, β is α/β. So we need to compute the mean of α/β
over the posterior distribution. We can write this as a ratio of high dimensional (ten or
eleven) integrals, but that is hard to compute. So we use the Gibbs sampler to sample λ, β
from the posterior. Note that this is an 11 dimensional sampler. So we need the conditional
distributions of each λi and of β.

λi|β, ti, xi ∼ Gamma(xi + α, ti + β), (8.97)

β|λ ∼ Gamma(γ + 10α, δ +
10
∑

i=1

λi) (8.98)


