
1 Probability measure and random variables

1.1 Probability spaces and measures

We will use the term experiment in a very general way to refer to some process
that produces a random outcome.

Definition 1. The set of possible outcomes is called the sample space. We
will typically denote an individual outcome by ω and the sample space by Ω.

Set notation: A ⊂ B, A is a subset of B, means that every element of
A is also in B. The union A∪B of A and B is the of all elements that are in
A or B, including those that are in both. The intersection A ∩ B of A and
B is the set of all elements that are in both of A and B.

∪n
j=1Aj is the set of elements that are in at least one of the Aj.

∩n
j=1Aj is the set of elements that are in all of the Aj.

∩∞
j=1Aj, ∪∞

j=1Aj are ...
Two sets A and B are disjoint if A ∩ B = ∅. ∅ denotes the empty set,

the set with no elements.
Complements: The complement of an event A, denoted Ac, is the set

of outcomes (in Ω) which are not in A. Note that the book writes it as Ω\A.
De Morgan’s laws:

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

(
⋃

j

Aj)
c =

⋂

j

Ac
j

(
⋂

j

Aj)
c =

⋃

j

Ac
j

(1)

Definition 2. Let Ω be a sample space. A collection F of subsets of Ω is a
σ-field if

1. Ω ∈ F

2. A ∈ F⇒Ac ∈ F

3. An ∈ F for n = 1, 2, 3, · · · ⇒ ⋃∞
n=1 An ∈ F
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Definition 3. Let F be a σ-field of events in Ω. A probability measure on
F is a real-valued function P on F with the following properties.

1. P(A) ≥ 0, for A ∈ F .

2. P(Ω) = 1, P(∅) = 0.

3. If An ∈ F is a disjoint sequence of events, i.e., Ai ∩ Aj = ∅ for i 6= j,
then

P(
∞
⋃

n=1

An) =
∞
∑

n=1

P(An) (2)

We refer to the triple (Ω,F ,P) as a probability space.

Theorem 1. Let (Ω,F ,P) be a probability space.

1. P(Ac) = 1−P(A) for A ∈ F .

2. P(A ∪B) = P(A) +P(B)−P(A ∩B) for A,B ∈ F .

3. P(A \B) = P(A)−P(A ∩B). for A,B ∈ F .

4. If A ⊂ B, then P(A) ≤ P(B). for A,B ∈ F .

5. If A1, A2, · · · , An ∈ F are disjoint, then

P(
n
⋃

j=1

Aj) =
n
∑

j=1

P(Aj) (3)

1.2 Conditional probability and independent events

Definition 4. If A and B are events and P(B) > 0, then the (conditional)
probability of A given B is denoted P(A|B) and is given by

P(A|B) =
P(A ∩ B)

P(B)
(4)

Theorem 2. Let P be a probability measure, B an event (B ∈ F) with
P(B) > 0. For events A (A ∈ F), define

Q(A) = P(A|B) =
P(A ∩ B)

P(B)

Then Q is a probability measure on (Ω,F).
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We can rewrite the definition of conditional probability as

P(A ∩ B) = P(A|B)P(B) (5)

In some experiments the nature of the experiment means that we know cer-
tain conditional probabilities. If we know P(A|B) and P(B), then we can
use the above to compute P(A ∩ B).

In general P(A|B) 6= P(A). Knowing that B happens changes the prob-
ability that A happens. But sometimes it does not. Using the definition of
P(A|B), if P(A) = P(A|B) then

P(A) =
P(A ∩ B)

P(B)
(6)

i.e., P(A ∩ B) = P(A)P(B). This motivate the following definition.

Definition 5. Two events are independent if

P(A ∩ B) = P(A)P(B) (7)

Theorem 3. If A and B are independent events, then

1. A and Bc are independent

2. Ac and B are independent

3. Ac and Bc are independent

In general A and Ac are not independent.
The notion of independence can be extended to more than two events.

Definition 6. Let A1, A2, · · · , An be events. They are independent if for all
subsets I of {1, 2, · · · , n} we have

P(∩i∈IAi) =
∏

i∈I

P(Ai) (8)

They are just pairwise independent if P(Ai ∩Aj) = P(Ai)P(Aj) for 1 ≤ i <
j ≤ n.
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1.3 The partition theorem and Bayes theorem

Definition 7. A partition is a finite or countable collection of events Bj such
that Ω = ∪jBj and the Bj are disjoint, i.e., Bi ∩ Bj = ∅ for i 6= j.

Theorem 4. (Partition theorem) Let {Bj} be a partition of Ω. Then for
any event A,

P(A) =
∑

j

P(A|Bj)P(Bj) (9)

Bayes theorem deals with the situation where we know all the P(A|Bj)
and want to compute P(Bi|A).

Theorem 5. (Bayes theorem) Let {Bj} be a partition of Ω. Then for any
event A and any k,

P(Bk|A) =
P(A|Bk)P(Bk)
∑

j P(A|Bj)P(Bj)
(10)

1.4 Random Variables and their distribution

A random variable is a function X from Ω to the real numbers. It must be
measurable, meaning that for all Borel subsets B of the real line, X−1(B)
must belong to F . In this course RV’s will come in two flavors - discrete and
continuous. We will not worry about measurability.

We can consider functions from Ω into other spaces. A function that maps
to R

n is called a random vector. More general range spaces are possible, for
example, X could map into a metric space S. S could be a set of graphs, in
which case we would call X a graph valued random variable.

Important idea: The sample space Ω may be quite large and compli-
cated. But we may only be interested in one or a few RV’s. We would like
to be able to extract all the information in the probability space (Ω,F ,P)
that is relevant to our random variable(s), and forget about the rest of the
information contained in the probability space. We do this by defining the
distribution of a random variable. The distribution measure of X is the Borel
measure µX on the real line given by µX(B) = P(X ∈ B). We can also spec-
ify the distribution by the cumulative distribution function (CDF). This is
the function on the real line defined by F (x) = P(X ≤ x). If we want to
make it clear which RV we are talking about, we write it as FX(x).

4



Theorem 6. For any random variable the CDF satisfies

1. F (x) is non-decreasing, 0 ≤ F (x) ≤ 1.

2. limx→−∞ F (x) = 0, limx→∞ F (x) = 1.

3. F (x) is continuous from the right.

Theorem 7. Let F (x) be a function from R to [0, 1] such that

1. F (x) is non-decreasing.

2. limx→−∞ F (x) = 0, limx→∞ F (x) = 1.

3. F (x) is continuous from the right.

Then F (x) is the CDF of some random variable, i.e., there is a probability
space (Ω,F ,P) and a random variable X on it such that F (x) = P(X ≤ x).

Another important idea: Suppose we have two completely different
probability spaces (Ω1,F1,P1) and (Ω2,F2,P2), and RV’s X1 on the first
and X2 on the second. Then it is possible that X1 and X2 have the same
distribution measure, i.e., for any Borel set B P(X1 ∈ B) = P(X2 ∈ B).
If we only look at X1 and X2 when we do the two experiments, then we
won’t be able to tell the experiments apart. When the two random variables
have the same distribution measure we say that X1 and X2 are identically
distributed.

1.5 Expected value

Given a random variable X, the expected value or mean of X is

E[X] =

∫

X dP (11)

The integral is over ω and the definition requires abstract integration theory.
But as we will see, in the case of discrete and continuous random variables
this abstract integral is equal to either a sum or a calculus type integral on
the real line. Here are some trivial properties of the expected value.

Theorem 8. Let X, Y be discrete RV’s with finite mean. Let a, b ∈ R.
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1. E[aX + bY ] = aE[X] + bE[Y ]

2. If X = b, b a constant, then E[X] = b.

3. If P(a ≤ X ≤ b) = 1, then a ≤ E[X] ≤ b.

4. If g(X) and h(X) have finite mean, then E[g(X)+h(X)] = E[g(X)]+
E[h(X)]

The next theorem is not trivial; it is extremely useful if you want to
actually compute an expected value.

Theorem 9. (change of variables or transformation theorem) Let X be a
random variable, µX its distribution measure. Let g(x) be a Borel measurable
function from R to R. Then

E[g(X)] =

∫

R

g(x) dµX (12)

provided
∫

R

|g(x)| dµX < ∞ (13)

In particular

E[X] =

∫

x dµX(x) (14)

Definition 8. The variance of X is

var(X) = E[(X − µ)2]

where µ = EX. The standard deviation of X is
√

var(X). The variance
is often denoted σ2 and the standard deviation by σ. The mean of X, i.e.,
E[X] is also called the first moment of X. The kth moment of X is E[Xk].

Proposition 1. If X has finite first and second moments, then

var(X) = E[X2]− (E[X])2

and

var(aX + b) = a2var(X), a, b ∈ R
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1.6 Joint distributions

If X1, X2, · · · , Xn are RV’s, then their joint distribution measure is the Borel
measure on R

n given by

µX1,X2,···,Xn
(B) = P((X1, X2, · · · , Xn) ∈ B) (15)

where B is a Borel subset of Rn.

Definition 9. Random variables X1, X2, · · · , Xn are independent if their
joint distribution measure is the product of their individual distribution mea-
sures, i.e.,

µX1,X2,···,Xn
= µX1

× µX2
× · · · × µXn

(16)

This is equivalent to saying that

P(X1 ∈ B1, X2 ∈ B2, · · · , Xn ∈ Bn) =
n
∏

i=1

P(Xi ∈ Bi) (17)

for all Borel sets Bi in R. An infinite set of random variables is independent
if every finite subset of them is independent.

Theorem 10. Let X1, X2, · · · , Xn be independent. Then

E[
n
∏

i=1

Xi] =
n
∏

i=1

E[Xi] (18)

Furthermore, if gi : R → R are measurable, then g1(X1), g2(X2), · · · , gn(Xn)
are independent and so

E[
n
∏

i=1

gi(Xi)] =
n
∏

i=1

E[gi(Xi)] (19)

(We are omitting some hypothesis that insure things are finite.)

Corollary 1. If X1, X2, · · ·Xn are independent and have finite variances,
then

var(
n
∑

i=1

Xi) =
n
∑

i=1

var(Xi) (20)
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There is a generalization of the change of variables theorem:

Theorem 11. Let g : Rn → R be measurable. Let X1, · · · , Xn be random
variables. Then

E[g(X1, · · · , Xn)] =

∫

Rn

g(x1, x2, · · · , xn) dµX1,···,Xn
(21)

(We are omitting a hypothesis that insures the integrals involved are defined.)

2 Discrete Random Variables

2.1 Probability mass function

A random variable is said to be discrete if its range is finite or countably
infinite.

Definition 10. The probability mass function (pmf) f(x) of a discrete RV
X is the function on R given by

f(x) = P(X = x)

For discrete RV’s the distribution measure µX is just a sum of point
masses

µX =
∑

x

f(x)δx (22)

Here δx denotes the measure such that δx(B) is 1 if x ∈ B and is 0 if x /∈ B.
Notation/terminology: If we have more than one RV, then we have

more than one pmf. To distinguish them we use fX(x) for the pmf for
X, fY (x) for the pmf for Y , etc. Sometimes the pmf is called the “density
function” and sometimes the “distribution ofX.” The latter can be confusing
as the term “distribution function” usually means the cumulative distribution
function. For a discrete RV the change of variables theorem becomes

Theorem 12. Let X be a discrete RV with probability mass function fX(x).
Then the expected value of X is given by

E[X] =
∑

x

xfX(x)
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If g : R → R, then

E[g(X)] =
∑

x

g(x)fX(x)

(We are omitting some hypothesis that insure things are finite.)

2.2 Discrete RV’s - catalog

Bernoulli RV (one parameter p ∈ [0, 1]) This is about as simple as they
get. The RV X only takes on the values 0 and 1.

p = P(X = 1), 1− p = P(X = 0)

We can think of this as coming from a coin with probability p of heads. We
flip it only once, and X = 1 corresponds to heads, X = 0 to tails. It is
standard to refer to the outcome with X = 1 as success and the outcome
with X = 0 as failure.

Binomial RV (two parameters: p ∈ [0, 1], positive integer n) The range of
the random variable X is 0, 1, 2, · · · , n.

P(X = k) =

(

n

k

)

pk(1− p)n−k

Think of flipping an unfair coin n times. p is the probability of heads on
a single flip and X is the number of head we get out of the n flips. The
parameter n is often called the “number of trials.”

Poisson RV (one parameter: λ > 0) The range of the random variable X
is 0, 1, 2, · · ·.

P(X = k) =
λke−λ

k!

There is no simple experiment that produces a Poisson random variable. But
it is a limiting case of the binomial distribution and it occurs frequently in
applications.

Geometric (one parameter: p ∈ [0, 1]) The range of the random variable X
is 1, 2, · · ·.

P(X = k) = p(1− p)k−1 (23)
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Think of flipping an unfair coin with p being the probability of heads until
we gets heads for the first time. Then X is the number of flips (including
the flip that gave heads.)

Caution: Some books use a different convention and take X to be the
number of tails we get before the first heads. In that case X = 0, 1, 2, ... and
the pmf is different.

2.3 Conditional expectation

Fix an event B. If we define a function Q on events by Q(A) = P(A|B),
then this defines a new probability measure. So if we have a RV X, then
we can consider its probability mass function with respect to the probability
measure Q. And so we can compute its expected value with repect to this
new pmf. This is called the conditional expectation of X given B. The
formal definition follows.

Definition 11. Let X be a discrete RV. Let B be an event with P(B) > 0.
The conditional probability mass function of X given B is

f(x|B) = P(X = x|B)

The conditional expectation of X given B is

E[X|B] =
∑

x

x f(x|B)

(provided
∑

x |x| f(x|B) < ∞).

The above is a bit of a cheat. There is a general definition of the condi-
tional expectation that applies to any RV. If we used this definition, then the
above definition would be a theorem that says for discrete RV’s the general
definition reduces to the above. The general definition is pretty abstract, so
I am skipping it.

Recall that the partition theorem gave a formula for the probability of
an event A in terms of conditional probabilities of A given the events in a
partition. There is a similar partition theorem for the expected value of a RV.
It is useful when it is hard to compute the expected value of X directly, but it
is relatively easy if we know something about the outcome of the experiment.
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Theorem 13. Let B1, B2, B3, · · · be a finite or countable partition of Ω. (So
∪kBk = Ω and Bk ∩ Bl = ∅ for k 6= l.) We assume also that P(Bk) > 0 for
all k. Let X be a discrete random variable. Then

E[X] =
∑

k

E[X|Bk]P(Bk)

provided that all the expected values are defined.

3 Multiple Discrete Random Variables

3.1 Joint densities

Definition 12. If X1, X2, · · · , Xn are discrete RV’s, then their joint proba-
bility mass function is

fX1,X2,···,Xn
(x1, x2, · · · , xn) = P(X1 = x1, X2 = x2, · · · , Xn = xn)

The joint density for n RV’s is a function on R
n. Obviously, it is a non-

negative function. It is non-zero only on a finite or countable set of points
in R

n. If we sum it over these points we get 1:

∑

x1,···,xn

fX1,X2,···,Xn
(x1, x2, · · · , xn) = 1

In the discrete case the joint distribution measure is a sum of point masses.

µX1,X2,···,Xn
=

∑

(x1,x2,···,xn)

fX1,X2,···,Xn
(x1, x2, · · · , xn)δ(x1,x2,···,xn) (24)

When we have the joint pmf of X, Y , we can use it to find the pmf’s of
X and Y by themselves, i.e., fX(x) and fY (y). These are called “marginal
pmf’s.” The formula for computing them is :

Corollary 2. Let X, Y be two discrete RV’s. Then

fX(x) =
∑

y

fX,Y (x, y)

fY (y) =
∑

x

fX,Y (x, y)
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This generalizes to n discrete RV’s in the obvious way.
For discrete RV’s, the multivariate change of variables theorem becomes

Theorem 14. Let X1, X2, · · · , Xn be discrete RV’s, and g : Rn → R. Then

E[g(X1, X2, · · · , Xn)] =
∑

x1,x2,···,xn

g(x1, x2, · · · , xn) fX1,X2,···,Xn
(x1, x2, · · · , xn)

3.2 Independence of discrete RV’s

Theorem 15. Discrete RV’s X1, X2, · · · , Xn are independent if and only if

fX1,X2,···,Xn
(x1, x2, · · · , xn) =

n
∏

i=1

fXi
(xi),

Remark: In general, knowing the individual pmf’s of X and Y , i.e., fX(x)
and fY (y), is not enough to determine the joint pmf of X and Y . But if
we also know that the two RV’s are independent, then fX(x) and fY (y)
completely determine the joint pmf.

Why do we care about independence? The following paradigm occurs
often, expecially in statistics and Monte Carlo.

Sampling paradigm: We have an experiment with a random variable
X. We do the experiment n times. We will refer to this n-fold repetition of
the experiment as the super-experiment. Let X1, X2, · · · , Xn be the resulting
values of X. These are random variables for the super-experiment. We
assume the repetitions of the experiment do not change the experiment and
they are independent. So the distribution of each Xj is the same as that of
X and X1, X2, · · · , Xn are independent. So the joint pmf is

fX1,X2,···,Xn
(x1, x2, · · · , xn) =

n
∏

j=1

fX(xj)

The RV’sX1, X2, · · · , Xn are called i.i.d. (independent, identically distributed).
We are often interested in the sample mean

X̄ =
1

n

n
∑

j=1

Xj

It is a RV for the super-experiment. We can find its mean and variance.
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The mean of X̄ is

E[X̄] = E[
1

n

n
∑

j=1

Xj ] =
1

n

n
∑

j=1

E[Xj ] =
1

n

n
∑

j=1

E[X] = E[X]

Since the Xj are independent, the variance of X1 + X2 + · · ·Xn is the sum
of their variances. Since they are identically distributed they have the same
variance. In fact, the variance of Xj is the variance of X. So the variance of
X1 +X2 + · · ·Xn is n var(X). Thus

var(X̄) =
1

n2
n var(X) =

1

n
var(X)

So if n is large, the variance of the sample average is much smaller than that
of the random variable X.

4 Absolutely continuous random variables

4.1 Densities

Definition 13. A random variable X is absolutely continuous if there is a
non-negative function fX(x), called the probability density function (pdf) or
just density, such that

P(X ≤ t) =

∫ t

−∞

fX(x) dx

In undergraduate courses such RV’s are often said to be just continuous
rather than absolutely continuous. A more abstract way to state the defini-
tion is that a random variable X is absolutely continuous if its distribution
measure is absolutely continuous with respect to Lebesgue measure on the
real line. The Radon-Nikodym derivation of µX with respect to Lebesgue
measure is then the density fX(x).

Proposition 2. If X is an absolutely continuous random variable with den-
sity f(x), then

1. P(X = x) = 0 for any x ∈ R.

2. P(a ≤ X ≤ b) =
∫ b

a
f(x) dx
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3. For any Borel subset C of R, P(X ∈ C) =
∫

C
f(x) dx

4.
∫∞

−∞
f(x) dx = 1

For absolutely continuous RV’s, dµX(x) is fX(x)dx, so the change of
variables theorem becomes

Theorem 16. Let X be an absolutely continuous RV with density fX(x).
Then the expected value of X is given by

E[X] =

∫ ∞

−∞

x fX(x) dx

If g is a measurable function from R to R, then

E[g(X)] =

∫ ∞

−∞

g(x) fX(x) dx

(We are omitting some hypothesis that insure things are finite.)

4.2 Catalog

Uniform: (two parameters a, b ∈ R with a < b) The uniform density on
[a, b] is

f(x) =

{

1
b−a

, if a ≤ x ≤ b
0, otherwise

Exponential: (one real parameter λ > 0 )

f(x) =

{

λe−λx, if x ≥ 0
0, if x < 0

Normal: (two real parameters µ, σ > 0 )

f(x) =
1

σ
√
2π

exp

(

−1

2

(

x− µ

σ

)2
)

The range of a normal RV is the entire real line.
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4.3 Function of a random variable

Theorem 17. Let X be a continuous RV with pdf f(x) and CDF F (x). Then
they are related by

F (x) =

∫ x

−∞

f(t) dt,

f(x) = F ′(x)

Let X be a continuous random variable and g : R → R. Then Y = g(X)
is a new random variable. We want to find its density. One way to do this is
to first compute the CDF of Y and then differentiate it to get the pdf of Y .

4.4 Histograms and the meaning of the pdf

For a discrete RV the pmf f(x) has a direct interpretation. It is the proba-
bility that X = x. For a continuous RV, the pdf f(x) is not the probability
that X = x (which is zero), nor is it the probability of anything. If δ > 0 is
small, then

∫ x+δ

x−δ

f(u) du ≈ 2δf(x)

This is P(x− δ ≤ X ≤ x+ δ). So the probability X is in the small interval
[x− δ, x+ δ] is f(x) times the length of the interval. So f(x) is a probability
density.

Histogram are closely related to the pdf and can be thought of as “ex-
perimental pdf’s.” Suppose we generate N independent random samples
of X where N is large. We divide the range of X into intervals of width
∆x (usually called “bins”). The probability X lands in a particular bin is
P(x ≤ X ≤ x + ∆x) ≈ f(x)∆x. So we expect approximately Nf(x)∆x of
our N samples to fall in this bin.

To construct a histrogram of our N samples we first count how many fall
in each bin. We can represent this graphically by drawing a rectangle for
each bin whose base is the bin and whose height is the number of samples in
the bin. This is usually called a frequency plot. To make it look like our pdf
we should rescale the heights so that the area of a rectangle is equal to the
fraction of the samples in that bin. So the height of a rectangle should be

number of samples in bin

N ∆x
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With these heights the rectagles give the histogram. As we observed above,
the number of our N samples in the bin will be approximately Nf(x)∆x,
so the above is approximately f(x). So if N is large and ∆x is small, the
histogram will approximate the pdf.

5 Jointly continuous random variables

5.1 Joint density functions

Definition 14. Two random variables X and Y are jointly absolutely con-
tinuous if there is a function fX,Y (x, y) on R

2, called the joint probability
density function, such that

P(X ≤ s, Y ≤ t) =

∫ ∫

x≤s,y≤t

fX,Y (x, y) dxdy

The integral is over {(x, y) : x ≤ s, y ≤ t}. We can also write the integral as

P(X ≤ s, Y ≤ t) =

∫ s

−∞

(
∫ t

−∞

fX,Y (x, y) dy

)

dx

=

∫ t

−∞

(
∫ s

−∞

fX,Y (x, y) dx

)

dy

In this case the distribution measure is just fX,Y (x, y) times Lebesgue
measure on the plane, i.e.,

dµ(X,Y )(x, y) = fX,Y (x, y)dxdy (25)

In order for a function f(x, y) to be a joint density it must satisfy

f(x, y) ≥ 0
∫ ∞

−∞

∫ ∞

−∞

f(x, y)dxdy = 1

The definition and formula generalize to n RV’s in an obvious way.
The multivariate change of variables theorem becomes (with n = 2)
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Theorem 18. Let X, Y be jointly continuous random variables with joint
density f(x, y). Let g(x, y) : R2 → R.

E[g(X, Y )] =

∫ ∞

−∞

∫ ∞

−∞

g(x, y) f(x, y) dxdy

(Usual caveat about a missing hypothesis.)

What does the pdf mean? In the case of a single discrete RV, the pmf
has a very concrete meaning. f(x) is the probability that X = x. If X is a
single continuous random variable, then

P(x ≤ X ≤ x+ δ) =

∫ x+δ

x

f(u) du ≈ δf(x)

If X, Y are jointly continuous, than

P(x ≤ X ≤ x+ δ, y ≤ Y ≤ y + δ) ≈ δ2f(x, y)

5.2 Independence and marginal distributions

Proposition 3. If X and Y are jointly continuous with joint density fX,Y (x, y),
then the marginal densities are given by

fX(x) =

∫ ∞

−∞

fX,Y (x, y) dy

fY (y) =

∫ ∞

−∞

fX,Y (x, y) dx

This generalizes to n RV’s in the obvious way.

Theorem 19. Let X1, X2, · · · , Xn be jointly continuous random variables
with joint density fX1,X2,···,Xn

(x1, x2, · · · , xn) and marginal densities fXi
(xi).

They are independent if and only if

fX1,X2,···,Xn
(x1, x2, · · · , xn) =

n
∏

i=1

fXi
(xi)
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5.3 Change of variables

Suppose we have two random variables X and Y and we know their joint
density. We have two functions g : R2 → R and g : R2 → R, and we define
two new random variables by U = g(X, Y ), W = h(X, Y ). Can we find
the joint density of U and W? In principle we can do this by computing
their joint CDF and then taking partial derivatives. In practice this can be
a mess. There is a another way involving Jacobians which we will study in
this section. This all generalizes to the situation where we have n RV’s and
from n new RV’s by taking n different functions of the original RV’s.

First we return to the case of a function of a single random variable.
Support that X is a continuous random variable and we know it’s density. g
is a function from R to R and we define a new random variable Y = g(Z).
We want to find the density of Y . Our previous approach was to compute
the CDF first. Now suppose that g is strictly increasing on the range of X.
Then we have the following formula.

Proposition 4. If X is a continuous random variable whose range is D and
f : D → R is strictly increasing and differentiable, then

fY (y) = fX(g
−1(y))

d

dy
g−1(y)

We review some multivariate calculus. Let D and S be open subsets of
R

2. Let T (x, y) be a map from D to S that is 1-1 and onto. (So it has an
inverse.) We also assume it is differentiable. For each point in D, T (x, y) is
in R

2. So we can write T as T (x, y) = (u(x, y), w(x, y)) We have an integral
∫ ∫

D

f(x, y) dxdy

that we want to rewrite as an integral over S with respect to u and w. This
is like doing a substitution in a one-dimensional integral. In that case you
have dx = dx

du
du The analog of dx/du here is the Jacobian

J(u, w) = det

(

∂x
∂u

∂x
∂w

∂y
∂u

∂y
∂w

)

=
∂x

∂u

∂y

∂w
− ∂y

∂u

∂x

∂w

We then have
∫ ∫

D

f(x, y) dxdy =

∫ ∫

S

f(T−1(u, w)) |J(u, w)| dudw

18



Often f(T−1(u, w)) is simply written as f(u, w). In practice you write f ,
which is originally a function of x and y as a function of u and w.

If A is a subset of D, then we have
∫ ∫

A

f(x, y) dxdy =

∫ ∫

T (A)

f(T−1(u, w)) |J(u, w)| dudw

We now state what this results says about joint pdf’s.

Proposition 5. Let T (x, y) be a 1-1, onto map from D to S. Let X, Y be
random variables such that range of (X, Y ) is D, and let fX,Y (x, y) be their
joint density. Define two new random variables by (U,W ) = T (X, Y ). Then
the range of (U,W ) is S and their joint pdf on this range is

fU,W (u, w) = f(T−1(u, w)) |J(u, w)|
where the Jacobian J(u, w) is defined above.

5.4 Conditional density and expectation

Now suppose X and Y are jointly absolutely continuous random variables.
We want to condition on Y = y. We cannot do this since P(Y = y) = 0.
How can we make sense of something like P(a ≤ X ≤ b|Y = y) ? We can
define it by a limiting process:

lim
ǫ→0

P(a ≤ X ≤ b|y − ǫ ≤ Y ≤ y + ǫ)

Now let f(x, y) be the joint pdf of X and Y .

P(a ≤ X ≤ b|y − ǫ ≤ Y ≤ y + ǫ) =

∫ b

a

(

∫ y+ǫ

y−ǫ
f(u, w) dw

)

du

∫∞

−∞

(

∫ y+ǫ

y−ǫ
f(u, w) dw

)

du

Assuming f is continuous and ǫ is small,
∫ y+ǫ

y−ǫ

f(u, w) dw ≈ 2ǫf(u, y)

So the above just becomes
∫ b

a
2ǫf(u, y)du

∫∞

−∞
2ǫf(u, y)du

=

∫ b

a

f(u, y)

fY (y)
du

This motivates the following definition:
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Definition 15. Let X, Y be jointly continuous RV’s with pdf fX,Y (x, y). The
conditional density of X given Y = y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, if fY (y) > 0

When fY (y) = 0 we can just define it to be 0. We also define

P(a ≤ X ≤ b|Y = y) =

∫ b

a

fX|Y (x|y) dx

We have made the above definitions. We could have defined fX|Y and
P(a ≤ X ≤ b|Y = y) as limits and then proved the above as theorems.

What happens if X and Y are independent? Then f(x, y) = fX(x)fY (y).
So fX|Y (x|y) = fX(x) as we would expect.

The conditional expectation is defined in the obvious way

Definition 16.

E[X|Y = y] =

∫

x fX|Y (x|y) dx

As in the discrete case, we have cheated a bit. If we use the general
abstract definition of condition expectation, then the above definition would
be a theorem.

For continuous random variables we have the following “partition theo-
rems.”

Theorem 20. Let X, Y be jointly absolutely continuous random variables.
Then

P(a ≤ X ≤ b) =

∫

P(a ≤ X ≤ b|Y = y) fY (y) dy

where

P(a ≤ X ≤ b|Y = y) =

∫ b

a

fX|Y (x|y)dx

and

E[Y ] =

∫

E[Y |X = x] fX(x) dx

20



6 Laws of large numbers, central limit theo-

rem

6.1 Introduction

Let Xn be a sequence of independent, indentically distributed RV’s, an i.i.d.
sequence. The “sample mean” is defined to be

Xn =
1

n

n
∑

i

Xi

Note that Xn is itself a random variable. Intuitively we expect that as n →
∞, Xn will converge to E[X]. What exactly do we mean by “convergence”
of a sequence of random variables? And what can we say about the rate of
convergence and the error? We already saw that the mean ofXn is µ = E[X].
And its variance is σ2/n where σ2 is the common variance of the Xj.

6.2 Laws of large numbers

Definition 17. Let Yn be a sequence of random variables, and Y a random
variable, all defined on the same probability space. We say Yn converges to
Y in probability if for every ǫ > 0,

lim
n→∞

P(|Yn − Y | > ǫ) = 0

Theorem 21. (Weak law of large numbers) Let Xj be an i.i.d. sequence
with finite mean. Let µ = E[Xj ]. Then

Xn → µ in probability

Definition 18. Let Yn be a sequence of random variables and Y a random
variable. We say Xn converges to X “almost surely” or “with probability
one” if

P({ω : lim
n→∞

Yn(ω) = Y (ω)}) = 1

More succintly,

P(Yn → Y ) = 1
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This is a stronger form of convergence than convergence in probability.
(This is not at all obvious.)

Theorem 22. If Yn converges to Y with probability one, then Yn converges
to Y in probability.

Theorem 23. (Strong law of large numbers) Let Xj be an i.i.d. sequence
with finite mean. Let µ = E[Xj ]. Then

Xn → µ a.s.

i.e.,

P( lim
n→∞

Xn = µ) = 1

6.3 Central limit theorem

Let Xn be an i.i.d. sequence with finite variance. Let µ the their common
mean and σ2 their common variance. Define

Zn =
Xn − µ

σ/
√
n

=

∑n
j=1 Xj − nµ
√
nσ

Note that E[Zn] = 0, var(Zn) = 1.

Theorem 24. (Central limit theorem) Let Xn be an i.i.d. sequence of
random variables with finite mean µ and variance σ2. Define Zn as above.
Then for all a < b

lim
n→∞

P(a ≤ Zn ≤ b) =

∫ b

a

1√
2π

e−z2/2 dz

If we take a = −∞, then the theorem says that the CDF of Zn converges
pointwise to the CDF of the standard normal. This is an example of what
is called “convergence in distribution” in probability. However, we caution
the reader that the general definition of convergence in distribution involves
some technicalities.

Confidence intervals: The following is an important problem in statistics.
We have a random variable X (usually called the population). We know its
variance σ2, but we don’t know its mean µ. We have a “random sample,” i.e.,
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random variables X1, X2, · · · , Xn which are independent random variables
which all have the same distribution as X. We want to use our one sample
X1, · · · , Xn to estimate µ. The natural estimate for µ is the sample mean

Xn =
1

n

n
∑

j=1

Xj

How close is Xn to the true value of µ ? This is a vague question. We make
it precise as follows. For what ǫ > 0 will P(|Xn − µ| ≤ ǫ) = 0.95 ? We say
the [Xn − ǫ,Xn + ǫ] is a 95% confidence interval for µ. (The choice of 95%
is somewhat arbitrary. We can use 98% for example.

If n is large we can use the CLT to figure out what ǫ should be. As before
we let

Zn =
Xn − µ

σ/
√
n

So |Xn − µ| ≤ ǫ is equivalent to |Zn| ≤ ǫ
√
n/σ So we want

P(|Zn| ≤ ǫ
√
n/σ) = 0.95

The CLT says that the distribution for Zn is approximately that of a standard
normal. If Z is a standard normal, then P(|Z| ≤ 1.96) = 0.95. So ǫ

√
n/σ =

1.96. So we have found that the 95% confidence interval for µ is [µ− ǫ, µ+ ǫ]
where

ǫ = 1.96 ∗ σ/√n
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