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EXPLICIT POINTS ON THE LEGENDRE CURVE II

Ricardo P. Conceição, Chris Hall and Douglas Ulmer

Abstract. Let E be the elliptic curve y2 = x(x + 1)(x + t) over the field Fp(t), where
p is an odd prime. We study the arithmetic of E over extensions Fq(t1/d), where q is a
power of p and d is an integer prime to p. The rank of E is given in terms of an elementary
property of the subgroup of (Z/dZ)× generated by p. We show that for many values of
d the rank is large. For example, if d divides 2(pf − 1) and 2(pf − 1)/d is odd, then
the rank is at least d/2. When d = 2(pf − 1), we exhibit explicit points generating a
subgroup of E(Fq(t1/d)) of finite index in the “2-new” part, and we bound the index as
well as the order of the “2-new” part of the Tate–Shafarevich group.

1. Introduction

Fix an odd prime p and consider the elliptic curve

(1.1) E : y2 = x(x+ 1)(x+ t)

defined over the rational function field Fp(t). We call E the Legendre curve. In [9],
the third author considered the arithmetic of E over extensions of the form Fq(t1/d),
where q is a power of p and d is a positive integer prime to p, proving in particular
that the Birch and Swinnerton–Dyer conjecture holds for E over each of these fields.
Most of [9] emphasizes the case when d divides pf + 1 for some f . (These integers

d can also be described as those such that −1 is in the cyclic subgroup of (Z/dZ)×

generated by p.) The emphasis on this case is natural because the integers pf + 1 are
known to play a special role in arithmetic geometry in characteristic p. For example,
the Jacobian of the Fermat curve of degree d is supersingular if and only if d divides
pf + 1 for some f ≥ 1 [6].
One of our aims in this note is to point out that that there are many other values

of d such that the curve E has interesting arithmetic (e.g., large Mordell–Weil rank)
over Fq(t1/d). To that end, we calculate the Hasse–Weil L-function of E over the
extensions Fq(t1/d) for all q and d, and we give a simple and explicit formula for the
rank of E(Fq(t1/d)). Our formula for the rank is in terms of a new, elementary notion
of “balanced subgroup of the multiplicative group.”
Using the notion of balanced subgroup, we prove that if 4 divides d, pf ≡ d/2 + 1

(mod d) for some f , and q ≡ 1 (mod d), then ords=1 L(E/Fq(t1/d), s) ≥ d/2 and
E(Fq(t1/d)) has rank at least d/2. These integers d can also be described as those
dividing 2(pf − 1) for some f with 2(pf − 1)/d odd. Note that such integers d > 4 do
not divide pg + 1 for any value of g, so this is indeed a class of integers distinct from
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those studied in [9]. In [4], it is shown that this class of integers is, in a precise sense,
more numerous than the class of divisors of elements of {pg + 1|g ≥ 1}.
The statement of our rank formula is in Section 2. In Section 3, we calculate

the L-function of E over Fq(t1/d) for all d and all q in terms of Jacobi sums, and
in Section 4, we make these Jacobi sums explicit for those values of d where the
L-function has zeroes. This leads to the proof of the rank formula stated in Section 2.
In Section 5, we make several comments on the condition that p is balanced modulo

d, and in Section 5.5, we prove the rank assertion made above for values d where some
power of p is congruent to d/2 + 1 modulo d.
In Sections 6–9, we study the case d = 2(pf − 1) in more detail, exhibiting explicit

points which generate a finite index subgroup of the “2-new” part of the Mordell–Weil
group of E. We also obtain bounds on the “2-new” part of the Tate–Shafarevich group
of E, showing in particular that it is a p-group.
In Section 10, we show how certain endomorphisms of curves “explain” the explicit

points of [9] and this paper, in the style of [8]. Finally, in Section 11, we explain how
many of the results of this paper can be extended to a context where p = 2 is relevant.

1.1. Notation. For the convenience of the reader, we gather here notation which is
used in several parts of the paper.

• For a finite set S, we write |S| for the cardinality of S.
• We assume that p is an odd prime number and q is a power of p. We write Fp

and Fq for the fields of cardinality p and q, respectively. See Section 11 for a
situation where p = 2 is relevant.

• Throughout, d will be an integer >2 and relatively prime to p. See
[9, Remark 12.2] for the case when p divides d.

• Let K be the function field Fq(t1/d) = Fq(u), where ud = t.
• Throughout, E will denote the elliptic curve over Fp(t) defined by equa-
tion (1.1). We write L(E/K, T ) and L(E/K, s) for the Hasse–Weil L-function
of E over the extension K of Fp(t). Here T and s are related by T = q−s. We
write X(E/K) for the Tate–Shafarevich group of E over K.

• Let G = (Z/dZ)× and let A (resp. B) be the subset of G consisting of classes
whose least positive residue lies in (0, d/2) (resp. (d/2, d)).

• For an integer a prime to d, let 〈a〉d be the cyclic subgroup of G generated
by a. We will only use this notation when a = p or a = q. We write φ(d) for
|G| and od(q) for |〈q〉d|, i.e., for the order of q modulo d. We will also write
φ(e) = |(Z/eZ)×| and oe(q) = |〈q〉e| for divisors e of d.

• We write o ⊂ Z/dZ for an orbit of the action of 〈p〉d on Z/dZ. We always
assume that o �= {0} and that o �= {d/2} when d is even.

• For an orbit o ⊂ Z/dZ as above, we define a certain Jacobi sum Jo in
Section 3.1.

• We write μe and ζe for the group of roots of unity of order e and a fixed
primitive root of unity of order e, respectively. Depending on the context,
these are to be taken in Q, the algebraic closure of Q, or Fp, the algebraic
closure of Fp. In particular, Q(μe) denotes the splitting field of xe− 1 over Q.

• In Sections 6–9, we take d = 2(pf − 1) and q ≡ 1 (mod d) and write down
explicit points Ri ∈ E(Fq(t1/d)). The subgroup they generate is denoted Wd.
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2. The rank of E over Fq(t1/d)

We are going to compute the rank of the Mordell–Weil group of E over K = Fq(t1/d)
in terms of a certain property of the subgroup 〈p〉e of (Z/eZ)× for divisors e of d.
Consider the multiplicative group G = (Z/dZ)×, and recall that A ⊂ G is the

subset of classes whose least positive residue lies in (0, d/2), and B ⊂ G is the subset
whose least positive residue lies in (d/2, d), so that G is the disjoint union of A and B.

Definition 2.1. We say “p is balanced modulo d” if every coset C of 〈p〉d in G satisfies
|C∩A| = |C∩B|. In other words, the cosets of 〈p〉d are all evenly divided between the
two halves A and B of G. In this case, we also say that “〈p〉d is a balanced subgroup
of G.”

For example, it is easy to see that p is balanced modulo d if d > 2 and −1 ∈ 〈p〉d,
in other words, if d divides pf +1 for some f > 0. See Section 5 for several elementary
properties of the balanced condition. See also [4] for further analysis of this condition.
One of our main results is the following calculation of the rank of the Legendre

curve E over the fields Fq(t1/d).

Theorem 2.2. Let p be an odd prime number, let q be a power of p, and let d be a
positive integer not divisible by p. Let K be the field Fq(t1/d) and let E be the elliptic
curve defined by equation (1.1). Then the order of vanishing at s = 1 of L(E/K, s)
and the rank of the Mordell–Weil group E(K) are both equal to

∑
e|d
e>2

{
φ(e)
oe(q) if p is balanced modulo e,
0 if not,

where φ is Euler’s function and oe(q) is the order of q in (Z/eZ)×.

The proof will be given at the end of Section 4 below. The case when d divides
pf + 1 was already treated in [9, Corollary 5.3].

3. The L-function

Our goal in this section is to calculate the L-function of E in terms of Jacobi sums.

3.1. Jacobi sums. We review some elementary facts about Jacobi sums to set
notation. These facts can all be found, for example, in [2] although our notations
are not identical to those of [2].
Let OQ be the ring of algebraic numbers and fix a prime p ⊂ OQ over p. Then OQ/p

is an algebraic closure of Fp which we denote Fp. All finite fields of characteristic p
will be taken to be subfields of this Fp.
Reduction modulo p defines an isomorphism from the group of roots of unity in Q

of order prime to p to Fp
×
. Let t : Fp

× → Q
×
be the inverse of this homomorphism.

The restriction of t to any finite field k× ⊂ Fp
×
is a character of order |k×|. We extend

any character χ of k× to k by setting χ(0) = 0 if χ is non-trivial and χtriv(0) = 1.
If k is a finite field and χ1 and χ2 are multiplicative characters k× → Q

×
, we define

a Jacobi sum as follows:

J(χ1, χ2) =
∑

u+v+1=0

χ1(u)χ2(v),
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where the sum is over elements u and v ∈ k. The sum is an algebraic integer, and
when χ1, χ2, and χ1χ2 are all non-trivial, it has absolute value |k|1/2 in every complex
embedding, i.e., it is a Weil integer of size |k|1/2.
Let q be a fixed power of p, and let d be a positive integer not divisible by p.

Multiplication by q defines a permutation of Z/dZ and we consider the orbits of this
action. Let o ⊂ Z/dZ be such an orbit; we always assume that o �= {0} and, if d is
even, that o �= {d/2}.
We are going to define a Jacobi sum Jo. To that end, let |o| be the cardinality of

the orbit o and let i ∈ o. Note that if e = d/ gcd(d, i), then |o| is the smallest positive
integer f such that qf ≡ 1 (mod e). We set

χi = t
q|o|−1

d i,

which we view by restriction as a character of F×
q|o| . Also, we denote by λ the non-

trivial quadratic character of F×
q|o| . With these notations, we set

Jo = J(λ, χi) =
∑

u∈F
q|o|

λ(u)χi(−1− u).

This is independent of the choice of i because J(λ, χqi) = J(λq, χq
i ) = J(λ, χi). Since

we assumed o �= {0} and {d/2}, the character χi has order > 2 and so the Jacobi sum
Jo is a Weil integer of size q|o|/2.
The reader may wonder why we write χi rather than χi, and also why we introduce

e. The reasons are that Jo is naturally an element of Q(μe), and that χi is not in
general the ith power of a character of F×

q|o| .

3.2. The L-function. In this subsection, we give an elementary calculation of the
Hasse–Weil L-function of E over Fq(t).

Theorem 3.1. Let O be the set of orbits for multiplication by q on Z/dZ with the
orbits {0} and (when d is even) {d/2} omitted. For each o ∈ O, let Jo be the Jacobi
sum defined above, and let |o| be the cardinality of o. Then the Hasse–Weil L-function
of E over the field K = Fq(t1/d) is

L(E/K, T ) =
∏
o∈O

(
1− J2

oT
|o|

)
.

In particular, when q ≡ 1 (mod d) we have

L(E/K, T ) =
d−1∏
i=1

i�=d/2

(
1− J(λ, χi)2T

)
.

Proof. By definition,

L(E/K, T ) =
∏

good v

(
1− avT

deg(v) + qvT
2 deg(v)

)−1 ∏
bad v

(
1− avT

deg(v)
)−1

,

where the products are over places of K where E has good or bad reduction, qv is
the cardinality of the residue field at v, and av is defined by counting the number
of points on the plane cubic model of E at v: |E(Fqv )| = qv + 1 − av. We note in
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particular that av = 1,−1, 0 in the case when E has split multiplicative, non-split
multiplicative, or additive reduction respectively.
Expanding logL(E/K, T ) as a series in T and rearranging, we find that

(3.2) logL(E/K, T ) =
∞∑

n=1

Tn

n

∑
β∈P1(Fqn )

aβ,qn ,

where the sum is over the Fqn-valued points of P1 and aβ,qn is defined by requiring
that qn + 1− aβ,qn is the number of Fqn -valued points on the reduction of E at β.
Now focus on a particular value of n. We group the points β ∈ P1(Fqn) by their

images under the morphism ρ : P1 → P1, β �→ α = βd corresponding to the field
extension Fq(t1/d)/Fq(t). Let g = gcd(qn − 1, d) and let ψ be the character ψ =
t(q

n−1)/g of F×qn . Then the number of Fqn -valued points β over a fixed α �= 0,∞ is
either 0 or g depending on whether α is an gth power or not. This value is equal to
the character sum

∑g
i=0 ψ

i(α). Assuming that α �= 0,∞ so that ρ is unramified over
α, we have that aβ,qn = aα,qn . Thus,

∑
β∈P1(Fqn )

aβ,qn = a0,qn + a∞,qn +
∑

α∈P1(Fqn )
α�=0,∞

g−1∑
i=0

ψi(α)aα,qn .

Now we write aα,qn as a character sum. Let λ be the non-trivial character of F×qn

of order 2. Then by a standard calculation, for all finite α we have

aα,qn = −
∑

γ∈Fqn

λ(γ(γ + 1)(γ + α)).

Combining the last two paragraphs, we have

∑
β∈P1(Fqn )

aβ,qn = a∞,qn −
∑

α∈Fqn

g−1∑
i=0

ψi(α)
∑

γ∈Fqn

λ(γ(γ + 1)(γ + α)).

Changing the order of summation and replacing α with γα, we have

∑
β∈P1(Fqn )

aβ,qn = a∞,qn −
g−1∑
i=0

∑
γ∈Fqn

λ(γ + 1)ψi(γ)
∑

α∈Fqn

λ(α+ 1)ψi(α).

Now since λ(−1)2 = 1, we may change λ(α + 1) and λ(γ + 1) to λ(−α − 1) and
λ(−γ − 1). We find that

∑
β∈P1(Fqn )

aβ,qn = a∞,qn −
g−1∑
i=0

J(λ, ψi)2.

Finally, we note that J(λ, ψ0) = 0 and, if g is even, J(λ, ψg/2)2 = 1. On the other
hand, using the reduction types of E [9, Section 7] and what we said above about av

at places of bad reduction, we have that

a∞,qn =

{
1 if d is even,
0 if d is odd.
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Thus,

(3.3)
∑

β∈P1(Fqn )

aβ,qn = −
g−1∑
i=1

i�=g/2

J(λ, ψi)2.

Now we turn to the expression on the right-hand side of the formula of the theorem.
Expanding its log as a series in T and rearranging, we have

(3.4) log
∏

o⊂Z/dZ

o�={0},{d/2}

(
1− J2

oT
|o|

)
= −

∞∑
n=1

Tn

n

∑
o⊂Z/dZ

o�={0},{d/2}
|o| divides n

J2n/|o|
o |o|.

The union of the orbits which appear here (namely those where |o| divides n) is the
set of elements j ∈ Z/dZ, such that (qn − 1)j ≡ 0 (mod d), or equivalently, those
divisible by e = d/ gcd(qn − 1, d). For such an orbit,

J2n/|o|
o |o| =

∑
j∈o

J
(
λq|o| , χj

)2n/|o| =
∑
j∈o

J

(
λq|o| , t

q|o|−1
d j

)2n/|o|
,

where we write λq|o| to emphasize that in this formula λ is the quadratic character of
Fq|o| . Summing over the orbits with |o| dividing n, we have

∑
o⊂Z/dZ

o�={0},{d/2}
|o| divides n

J2n/|o|
o |o| =

g−1∑
i=1

i�=g/2

J

(
λq|o| , t

q|o|−1
g i

)2n/|o|
.

Now the Hasse–Davenport relation [2, 3.7.4] shows that

J

(
λq|o| , t

q|o|−1
g i

)2n/|o|
= J

(
λqn , t

qn−1
g i

)2

= J
(
λqn , ψi

)2
.

Thus we have

(3.5)
∑

o⊂Z/dZ

o�={0},{d/2}
|o| divides n

J2n/|o|
o |o| =

g−1∑
i=1

i�=g/2

J
(
λqn , ψi

)2
.

Comparing equations (3.2) and (3.3) with (3.4) and (3.5) completes the proof of
the theorem. �

4. Explicit Jacobi sums

In this section, we will make the Jacobi sums of the previous section sufficiently explicit
to calculate the order of vanishing of the L-function at s = 1 (i.e., at T = q−1).

Proposition 4.1. Let o ⊂ Z/dZ be an orbit for multiplication by q with o �= {0} and
o �= {d/2}. Let e = d/ gcd(d, i) for any i ∈ o. Then J2

o/q
|o| is a root of unity if and

only if p is balanced modulo e. Moreover, if p is balanced modulo e then J2
o = q|o|.
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Proof. We first show that J2
o/q

|o| is a root of unity if and only if p is balanced modulo e.
Note that Jo ∈ Q(μe). For a ∈ (Z/eZ)×, let σa ∈ Gal(Q(μe)/Q) be the automor-

phism with σa(ζe) = ζa
e . Recall that we fixed a prime p of Q over p. We write p also

for the prime of Q(μe) that it induces.
For a rational number r, write 〈r〉 for the fractional part of r, i.e., the number in

[0, 1) such that r − 〈r〉 ∈ Z.
We set e = d/ gcd(d, i) and i′ = i/ gcd(d, i). Stickelberger’s theorem (e.g., [2,

Theorem 3.6.6 and Proposition 2.5.14]) gives the valuation of

Jo = J(λ, χi) = J
(
t(q

f−1)/2, t(q
f−1)i/d

)
at the prime σa(p) as

−ν +
ν−1∑
j=0

〈
apj

2

〉
+

〈
ai′pj

e

〉
+

〈
a(−i′ − e/2)pj

e

〉
,

where ν satisfies q|o| = pν and the valuation of p is 1.
Since J2

o/q
|o| is a unit away from primes over p, it is a root of unity if and only

if its valuation at every prime over p is 0, or equivalently, if and only the displayed
quantity is equal to ν/2 for all a.
Now we note that if ai′pj has least positive residue modulo e in the interval (0, e/2),

then the sum of the three fractional parts in the display above is 1; on the other hand,
if ai′pj has least positive residue modulo e in (e/2, e), then the sum is 2. Thus the
displayed quantity is ν/2 if and only if exactly half of the elements of the coset
ai′〈p〉e ⊂ (Z/eZ)× have least positive residue in (0, e/2) and the other half have least
positive residue in (e/2, e). This holds for all a ∈ (Z/eZ)× if and only if p is balanced
modulo e. This completes the proof that J2

o /q
|o| is a root of unity if and only if p is

balanced modulo e.
Now we assume that p is balanced modulo e and we check that the root of unity

J2
o /q

|o| is in fact 1. To that end, consider
∑

u+v+1=0(λ(u)−1)(χi(v)−1) (cf. [2, 2.5.11
(2)]). Since

∑
u λ(u) =

∑
v χi(v) = 0, we have∑

u+v+1=0

(λ(u)− 1)(χi(v)− 1) = J(λ, χi) + q|o|.

Since λ takes values in {±1}, the sum is zero modulo 2. Thus, Jo = J(λ, χi) ≡ 1
(mod 2Z[μe]). But it is easy to see that the only roots of unity in Z[μe] congruent to
1 (mod 2) are ±1. Thus, Jo = ±q|o|/2 and J2

o = q|o|. �

Corollary 4.2. Let K = Fq(t1/d). The order of vanishing of L(E/K, s) at s = 1 is

∑
e|d
e>2

{
φ(e)
oe(q) if p is balanced modulo e,
0 otherwise,

where φ is Euler’s function and oe(q) is the order of q in (Z/eZ)×.

Proof. As in Theorem 3.1, let O be the set of orbits o �= {0}, {d/2} for multiplication
by q on Z/dZ. Write Oe for the subset of orbits o where gcd(i, d) = e for i ∈ o, so
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that O is the disjoint union of the Oe as e runs through the divisors of d. Then by
Theorem 3.1, we have

L(E/K, T ) =
∏
e|d

∏
o∈Oe

(1− J2
oT

|o|).

Since T = q−s, for o ∈ Oe the factor (1− J2
oT

|o|) contributes a simple zero at s = 1 if
and only if p is balanced modulo e. On the other hand, the cardinality of the orbits
in Oe is oe(q), so the number of orbits in Oe is φ(e)/oe(q). Summing over e gives the
asserted order of vanishing. �

Proof of Theorem 2.2. It is proven in [9, Corollary 11.3] that the Birch and
Swinnerton–Dyer conjecture holds for E/K, i.e., we have

ords=1 L(E/K, s) = RankE(K).

Thus Theorem 2.2 follows immediately from Corollary 4.2. �

5. Comments on balanced subgroups

In this section, we make several remarks on the condition that p be balanced modulo d.

5.1. First, we note that the cyclicity of 〈p〉d plays no role in the definition of balanced.
We may thus define the notion of a balanced subgroup of G = (Z/dZ)×. Namely, we
say a subgroup H “is balanced in G” or “is balanced modulo d” if for every coset gH
of H, the sets gH ∩A and gH ∩B have the same cardinality.
5.2. Next we note that if H and H ′ are subgroups of G with H ⊂ H ′ and if H is
balanced, then so is H ′. Indeed, the cosets of H ′ are unions of cosets of H, so are
equally distributed between A and B.

5.3. We call a balanced subgroup “minimal” if it does not properly contain another
balanced subgroup. Since {1} is never balanced, a balanced subgroup of order 2 is
automatically minimal. Examples show that there can be distinct minimal balanced
subgroups for a fixed d, or equivalently, that the intersection of two balanced sub-
groups need not be balanced. For example, if d = 39, the cyclic subgroups generated
by 7 and 29 are balanced, but their intersection (which is generated by 16) is not
balanced.

5.4. It is clear that {±1} ⊂ Z/dZ is balanced since −A = B. Therefore, if a subgroup
H contains −1, then H is balanced. For the case H = 〈p〉d, this means that p is
balanced modulo d if some power of p is congruent to −1 modulo d, or equivalently,
if d divides pf + 1 for some f . This is the case that is studied in [9].

5.5. It is equally clear that if 4|d then {1, d/2 + 1} is balanced, again because (d/2 +
1)A = B. Therefore, 〈p〉d is balanced when some power of p is congruent to d/2 + 1.
This case occurs when p is odd and d = 2(pf − 1), or more generally when p is odd,
and there is an f , such that d divides 2(pf − 1) with an odd quotient.
Note that if d divides 2(pf − 1) with odd quotient, then the same is true of d/e

for every odd e dividing d. Thus p is balanced modulo d/e for every odd e dividing
d. Applying Theorem 2.2 yields the following result.
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Proposition 5.1. Suppose that p is odd, d divides 2(pf − 1) with an odd quotient,
ud = t, and q ≡ 1 (mod d). Then

RankE(Fq(u))) = RankE(Fq(u2)) + d/2.

We will study the arithmetic of E over Fq(u) in the case when d = 2(pf − 1) and
q ≡ 1 (mod d) in more detail in Sections 6–9 below.

5.6. In [4], it is shown that the case where 4|d and d/2 + 1 ∈ 〈p〉d is more common
than the “supersingular” case where −1 ∈ 〈p〉d. More precisely, for a fixed odd prime
p, the number of integers d < X satisfying 4|d and d/2 + 1 ∈ 〈p〉d grows faster than
the number of integers d < X with −1 ∈ 〈p〉d.
5.7. Machine calculation shows that there are many pairs (p, d) such that p is bal-
anced modulo d but −1 �∈ 〈p〉d and d/2 + 1 �∈ 〈p〉d. However, it is conjectured in [4]
and proven in [3] that these “sporadic” cases are less common than the case −1 ∈ 〈p〉d.
In other words, for a fixed odd prime p, the number of integers d < X such that p
is balanced modulo d, but −1 �∈ 〈p〉d and d/2 + 1 �∈ 〈p〉d grows more slowly than the
number of d < X such that −1 ∈ 〈p〉d.
5.8. If H = 〈p〉d is balanced, then it has even cardinality. In other words, the order
of p in (Z/dZ)× must be even.

5.9. If d = 
a is an odd prime power, then 〈p〉d is balanced if and only if −1 ∈ 〈p〉e.
Indeed, if p is balanced, then 〈p〉d has even cardinality, so contains an element of order
exactly 2. But(Z/
aZ)× is cyclic and so contains a unique element of order exactly
2, namely −1. Conversely, we noted above that p is balanced if −1 ∈ 〈p〉d. The same
argument applies when e = 2
a is twice an odd prime power.

5.10. If p is odd and does not divide d, then for all sufficiently large j, p is balanced
modulo 2jd. Indeed, suppose that pg ≡ 1 (mod d). If j is large, then pg has order 2e

modulo 2j for some e > 1. The elements of (Z/2jZ)× of order 2 are −1, 2j−1− 1, and
2j−1 + 1. Of these, only 2j−1 + 1 is the square of another element of (Z/2jZ)×. This
implies that

pg2e−1 ≡ 2j−1d+ 1 (mod 2jd)

and so p is balanced modulo 2jd.
Using Theorem 2.2, we find that for any odd p, any power q of p, and any d not

divisible by p, the rank of E(K) is unbounded as K runs through the (2-adic) tower
of fields Fq(t1/(2jd)), j = 1, 2, . . . .

5.11. When d is odd, it makes sense to speak of 2 being balanced modulo d. We will
discuss arithmetic consequences of this case in Section 11 below.

5.12. Examining the first part of the proof of Proposition 4.1, the reader will note
that our balanced condition is equivalent to a certain condition on sums of fractional
parts which arises from considering valuations of Jacobi sums and Stickelberger’s
theorem. Similar conditions arise in the study of Fermat varieties, and there is a large
literature on these conditions and the related notion of “purity of Gauss sums.” We
mention only [1, 6, 7].
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6. Explicit points for d = 2(pf − 1)

We observed above that when a power of p is −1 (mod d) then 〈p〉d is balanced.
In [9, Section 3], explicit points are exhibited on E when d = pf + 1 and q ≡ 1
(mod d). Indeed, if ζd denotes a fixed primitive dth root of unity in Fq and ud = t,
then we have points Pi = (ζi

du, ζ
i
du(ζ

i
du+ 1)d/2) for i = 0, . . . , d− 1 in E(Fq(u)). We

write Vd for the subgroup of E(Fq(u)) generated by the Pi. It is shown in [9, 4.3 and
5.3] that Vd has finite index in E(Fq(t1/d)). More generally when d divides pf + 1 for
some f , the traces down to E(Fq(t1/d)) of the Pi generate a finite index subgroup of
the Mordell–Weil group.
Our goal in this section is to do something similar for d = 2(pf − 1). We work over

Fq(u) where ud = t. Let

R(u) =
(
u−2, u−3(u2 + 1)(p

f +1)/2
)
.

A simple calculation shows that R(u) is a rational point on E defined over Fp(u).
Next, fix a dth root of unity ζd in Fp. We define Ri = R(ζi

du) for i = 0, . . . , d− 1.
Since E is defined over Fp(t), the Ri are rational points on E defined over Fq(u) where
Fq = Fp(μd) = Fp2f .
Note that ζd/2

d = −1 and that Ri+d/2 = −Ri, so the group generated by the Ri has
rank at most d/2. Because of this relation we will consider Ri only for i = 0, . . . , d/2−
1. We write Wd for the subgroup of E(Fq(u)) generated by Ri for i = 0, . . . , d/2− 1.
In the next section, we will prove the following results.

Theorem 6.1. Suppose that d = 2(pf − 1), ud = t, and q ≡ 1 (mod d). Let Wd be
the subgroup of E(Fq(u)) generated by the points Ri defined above. Then Wd is free
abelian of rank d/2. The natural homomorphism

E(Fq(u2))⊕Wd → E(Fq(u))

is injective, and its image has finite index.

We will show that the index is independent of q and give bounds on it in Theo-
rem 8.1 below.
Note that if we trace the points Ri down to level d/2 (i.e., to Fq(u2)), we get zero.

On the other hand, it follows from the height calculation in the next subsection that
if e is a odd divisor of pf +1 and if we trace from level d = 2(pf +1) to level d/e (i.e.,
to Fq(ue)), the resulting points generate a group of rank d/(2e).

7. Heights for d = 2(pf − 1)

In this section, we compute the heights of the points Ri and use the result to prove
Theorem 6.1. As in [9, Section 8], we write 〈·, ·〉 for the canonical height pairing
without the factor log q.

Proposition 7.1. Let Ri be the points exhibited in Section 6. For 0 ≤ i, j ≤ d/2− 1,
the height pairing has values

〈Ri, Rj〉 =

{
pf if i = j,

0 if i �= j.

If P ∈ E(Fq(u2)), then 〈P,Ri〉 = 0 for all i.
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Proof. The general strategy for calculating heights is discussed in [5]. The case of
the Legendre curve and the construction of the Néron model needed to carry out the
calculation are discussed in detail in [9, Sections 7 and 8]. Since the case d = pf + 1
treated there is similar to the case d = 2(pf −1) discussed here, we will not give many
details.
Using the Galois invariance of the height pairing and the equality Ri+d/2 = −Ri,

we may assume that j = 0. As in the proof of [9, Theorem 8.2], we conflate the points
Ri and O with the corresponding sections of π.
We write π : Ed → P1 for the Néron model of E/Fq(u). We recall from [9, Section 7]

that E has reduction type I2d at u = 0 and type I2 at the places dividing ud − 1.
Since d is even, the reduction type is I2d at u = ∞. At all other places, E has good
reduction.
By [9, Lemma 7.1], the height (or degree) of Ed → P1 is d/2 = pf − 1. Therefore,

the self-intersections O2 and R2
i are −d/2 = −(pf−1). The intersection number R0.O

is equal to 1. (There is a simple intersection over u = 0.) Therefore, the “geometric”
part of the height pairing 〈R0, R0〉 is

−(R0 −O)(R0 −O) = d+ 2 = 2pf .

For the “correction factors,” one checks that R0 meets the identity component at u = 0,
the non-identity component at u = ζj

d where j = ±d/4, the identity component at
u = ζj

d for other values of j, and the component labelled d at u = ∞. Thus the
correction factor is

−2
(

1 · 1
2

)
−

(
d · d
2d

)
= −1− d/2

and the height 〈R0, R0〉 = d/2 + 1 = pf .
For 0 < i ≤ d/2 − 1, the intersection number Ri.R0 is 2. (There are simple in-

tersections over u = 0 and u = ∞.) Thus the “geometric” part of the height pairing
〈Ri, R0〉 is

−(Ri −O)(R0 −O) = −2 + 2 + d/2 = d/2.

The only place where both Ri and R0 meet a non-identity component is at u = ∞,
where they both meet the component labeled d. The local contribution is thus −d/2,
and the height pairing is zero.
This verifies the formula for the heights 〈Ri, Rj〉.
If P ∈ E(Fq(u2)), then P is fixed by Gal(Fq(u)/Fq(u2)). But the automorphism σ

with σ(u) = −u satisfies σ(Ri) = −Ri for all i. Thus

〈P,Ri〉 = 〈σ(P ), σ(Ri)〉 = −〈P,Ri〉
and it follows that 〈P,Ri〉 = 0 for all i as desired.
This completes the proof of the proposition. �

Proof of Theorem 6.1. It follows immediately from Proposition 7.1 that the points Ri

for i = 0, . . . , d/2− 1 are independent, in other words that Wd is free abelian of rank
d/2.
If P is a point in the intersection of Wd and E(Fq(u)) then by the Proposition

we have 〈P, P 〉 = 0, so that P is torsion. But we just saw that Wd is torsion-free, so
P = 0. This proves that E(Fq(u2))⊕Wd → E(Fq(u)) is injective.
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By Proposition 5.1, the rank of E(Fq(u)) is d/2 plus the rank of E(Fq(u2)), so the
index of E(Fq(u2))⊕Wd in E(Fq(u)) is finite.
This completes the proof of Theorem 6.1. �

8. Bounds on the index for d = 2(pf − 1)

Throughout this section, we assume that d = 2(pf − 1), ud = t, and q ≡ 1 (mod d).
Since p is odd, this implies that q ≡ 1 (mod 4).
We begin by recalling several points from [9, Section 3]: we have 2-torsion points

Q0 = (0, 0), Q1 = (−1, 0), and Qt = (−t, 0), as well as the 4-torsion points P (2)
i with

i ∈ Z/2Z defined by P (2)
0 = (t1/2, t1/2(t1/2 +1)) and P (2)

1 = (−t1/2,−t1/2(−t1/2 +1)).
Next we recall some results on Sel2(E/Fq(u)), the 2-Selmer group of E over Fq(u).

This group is defined in [9, Section 5], and it is shown there that when d is even there
is an injection

Sel2(E/Fq(u)) ↪→ (Z/2Z)d

and the composed map

E(Fq(u))/2E(Fq(u)) ↪→ Sel2(E/Fq(u)) ↪→ (Z/2Z)d

sends a point (x, y) �∈ {O,Q1} to the tuple (e0, . . . , ed−1) where

ej = ordu=ζj (x+ 1) (mod 2).

It follows immediately from this that if q′ is a power of q, then the natural map of
2-Selmer groups

Sel2(E/Fq(u)) → Sel2(E/Fq′(u))
is injective.
There is also an explicit calculation of Sel2(E/Fq(u)) in [9, Section 5]. In terms

of the injection Sel2(E/Fq(u)) ↪→ (Z/2Z)d, we have that Sel2(E/Fq(u)) ∼= (Z/2Z)d if
q ≡ 1 (mod 2d), whereas if (q − 1)/d is odd, Sel2(E/Fq(u)) consists of those tuples
(e0, . . . , ed−1) satisfying

d/2−1∑
i=0

e2i =
d/2−1∑

i=0

e2i+1 = 0.

Recall that Wd is the subgroup of E(Fq(u)) generated by the points Ri, i =
0, . . . , d/2 − 1 defined in Section 6. Now we turn to the main topic of this section,
namely the index of E(Fq(u2))⊕Wd in E(Fq(u)).

Theorem 8.1. Suppose that d = 2(pf − 1), ud = t, and q ≡ 1 (mod d). Let I be the
index of E(Fq(u2))⊕Wd in E(Fq(u)). Then for a fixed p and f , I is independent of
q and is a power of 2 times a power of p. The p part of I divides pf(pf−1)/2, and I is
divisible by 4.

Proof. Note that the index I can only increase with q. We argue that it does not
increase. Since the rank of E(Fq(u)) is independent of q (for q satisfying our hypotheses),
if I increased going from Fq(u) to Fq′(u), there would be a point P ∈ E(Fq′(u)) \
E(Fq(u)) with nP ∈ E(Fq(u)). In this case, Frq(P ) − P would be n-torsion. By [9,
Proposition 6.1] we may assume n = 2. But the injectivity of Sel2(E/Fq(u)) →
Sel2(Fq′(u)) noted above implies that a basis of E(Fq(u))/2E(Fq(u)) is also a basis of
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E(Fq′(u))/2E(Fq′(u)), and this implies that the 2 part of the index cannot increase.
This proves that I is independent of q.
We can also use Selmer groups to see that the index I is divisible by 4 as follows.

An easy calculation shows that the image ofWd in Sel2(Fq(u)) has dimension d/2 and
it contains the image of the 4-torsion points P (2)

0 and P (2)
1 . More explicitly, we find

that
d/4−1∑

i=0

R2i + P
(2)
1+d/4 and

d/4−1∑
i=0

R2i+1 + P
(2)
d/4

are divisible by 2 in E(Fq(u)). On the other hand, they are are not divisible by 2
in E(Fq(u)) ⊕ Wd since Theorem 6.1 shows the sums

∑
R2i and

∑
R2i+1 are not

divisible by 2 in Wd.
To further control the index of E(Fq(u2))⊕Wd in E(Fq(u)), we use a relative version

of the integrality result [9, Proposition 9.1]. To state the result, we first introduce some
notation. IfM is a finitely generated Z-module, we writeM [1/2] forM⊗Z[1/2]. IfM
is also equipped with an automorphism of order 2, we have a direct sum decomposition

M [1/2] = M+ ⊕M−,

where M+ denotes the fixed subgroup of M [1/2] and M− denotes the subgroup
of M [1/2] where the automorphism acts as −1. If M is equipped with a symmet-
ric, bilinear, Q-valued pairing, we may canonically extend the pairing to M [1/2].
If M (resp. M ′) is a finitely generated Z-module (resp. a finitely generated Z[1/2]-
module) equipped with a symmetric, bilinear, Q-valued pairing, we define Disc(M)
and Disc(M ′) in the usual way: choose a basis of M modulo torsion (resp. a basis of
M ′ modulo Z[1/2]-torsion) and let Disc be the absolute value of the determinant of the
matrix of pairings of basis elements. Then Disc(M) is a well-defined element of Q, and
Disc(M ′) is well defined up to multiplication by the square of an element of Z[1/2]×,
i.e., up to a power of 4.
Now returning to elliptic curves, we let π : E → P1 be the Néron model of E/Fq(u),

and we letN be the subgroup of the Néron–Severi group of E generated by components
of fibers of π that do not meet the zero section. This is known to be a finitely generated
free abelian group. With these notations, [9, Proposition 9.1] says that the rational
number

Disc(E(Fq(u))) Disc(N)
|E(Fq(u))tor|2

is in fact an integer. If we take the proof of this result, tensor all the groups appearing
in it with Z[1/2], and then take the minus part for Gal(Fq(u)/Fq(u2)) = {1, σ}, we
find that the rational number

Disc(E(Fq(u))−) Disc(N−)
|E(Fq(u))−tor|2

(well-defined up to squares of elements of Z[1/2]×) is in fact an element of Z[1/2].
Since E(Fq(u))tor is a 2-group, E(Fq(u))−tor is trivial. Using the Néron model calcu-

lations of [9, Section 7], we find that all components of the fibers of π over 0 and∞ are
fixed by σ and so do not contribute to N−. The fibers over the dth roots of unity are
permuted in pairs, so N− is a free Z[1/2]-module of rank d/2, and it has an orthogonal
set of generators each of which has self-pairing −4. Thus Disc(N−) = (−4)d/2 = 2d
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which is a unit in Z[1/2]. Our integrality result then yields that Disc(E(Fq(u))−) lies
in Z[1/2].
Now the inclusion E(Fq(u2))⊕Wd ↪→ E(Fq(u)) yields an identification(

E(Fq(u))
E(Fq(u2))⊕Wd

)
[1/2] ∼= E(Fq(u))−

Wd[1/2]
.

If J denotes the order of this group (which is the prime-to-2 part of the index of
E(Fq(u2))⊕Wd in E(Fq(u))), then we have

Disc(E(Fq(u))−) =
Disc(Wd[1/2])

J2
.

Proposition 7.1 shows that Disc(Wd[1/2]) is pf(pf−1), so our integrality result shows
that J is a power of p. Therefore, the index of E(Fq(u2))⊕Wd in E(Fq(u)) is a power
of 2 times a power of p. Moreover, the power of p divides pf(pf−1)/2. �

It follows from Theorem 9.1 below that the 2 part of I divides 2pf +1. We suspect
that the 2 part of I is in fact always 4. We can prove this when pf ≡ 3 (mod 4) by
comparing the trace down to level d = 4 of points Ri of this paper and the points Pi

of [9, Section 3]. It is also true in several other examples we have checked, but we do
not know how to prove it in general.

9. Bounds on X for d = 2(pf − 1)

Recall that the second part of the conjecture of Birch and Swinnerton-Dyer relates
the leading coefficient of the L-series of E at s = 1 to other invariants of E. More
precisely, defining L∗(E) := 1

r!L
(r)(E, 1), we should have

L∗(E) =
|X|Rτ
|Etor|2 ,

where r is the order of vanishing of the L-function, X is the Tate–Shafarevich group
of E, R is a regulator, and τ is a Tamagawa number. See [10, Section 6] for definitions
and a precise statement. The conjecture holds in our context by [9, Corollary 11.3].
Our goal in this section is to exploit the BSD formula to obtain information on

X(E/Fq(u)) when d = 2(pf − 1). In [9, Corollary 10.2] it is proven that when d =
pf + 1, X(E/Fq(u)) is a p-group of order equal to the square of an index. The
analog for d = 2(pf − 1) is necessarily more complicated because we have very little
information in general on the arithmetic of E over Fq(u2). Nevertheless, we can prove
a strong relative statement.
To state the theorem, we write

Nmq : X(E/Fq(u)) →X(E/Fq(u2))

for the norm map induced by the corestriction

H1(Spec Fq(u), E) → H1(Spec Fq(u2), E).

Theorem 9.1. Suppose that d = 2(pf − 1), ud = t, and q ≡ 1 (mod d). Let I be the
index of E(Fq(u2))⊕Wd in E(Fq(u)), as in Theorem 8.1.
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(1) We have

I2 = 2pf +1 p
fd/2

qd/4

|X(E/Fq(u))|
|X(E/Fq(u2))| = 2pf +1 p

fd/2

qd/4

|KerNmq |
|CokerNmq | .

In particular, when q = p2f , we have

I2 = 2pf +1 |X(E/Fq(u))|
|X(E/Fq(u2))| = 2pf +1 |KerNmq |

|CokerNmq | .

(2) The cokernel of Nmq is a 2-group.
(3) The kernel of Nmq is a p-group.
(4) For fixed p and f , the cokernel of Nmq is independent of q. The cokernel of

Nmq is non-trivial if pf ≡ 1 (mod 4). The order of KerNmq goes to infinity
with logp q.

Proof. By Theorem 3.1, Proposition 4.1, and Section 5.5, we have
L(E/Fq(u), s)
L(E/Fq(u2), s)

= (1− q1−s)d/2

and so L∗(E/Fq(u)) = L∗(E/Fq(u2)). Taking the ratio of the two BSD formulas, we
find

1 =
R(E/Fq(u))
R(E/Fq(u2))

|X(E/Fq(u))|
|X(E/Fq(u2))|

τ(E/Fq(u))
τ(E/Fq(u2))

.

Using the notation of Section 8 and Theorem 6.1, we have

R(E/Fq(u)) = Disc(E(Fq(u))) = Disc
(
E(Fq(u2))⊕Wd

)
/I2.

On the other hand, E(Fq(u2))⊕Wd is an orthogonal direct sum and Disc(Wd) = pfd/2

by Proposition 7.1. Thus
R(E/Fq(u))
R(E/Fq(u2))

=
pfd/2

I2
.

For the τ ratio, we have

τ(E/Fq(u)) = 2d+2d2q1−d/2 and τ(E/Fq(u2)) = 2d/2d2q1−d/4,

so
τ(E/Fq(u))
τ(E/Fq(u2))

= 2d/2+2q−d/4 = 2pf +1q−d/4.

Substituting the last two displayed ratios into the ratio of BSD formulas yields
part (1).
We saw in Theorem 6.1 that I is a power of 2 times a power of p, so part (1) shows

that the same is true of |X(E/Fq(u))|/|X(E/Fq(u2))|.
Next we consider the pull-back and norm maps on the Tate–Shafarevich groups

induced by the inclusion of fields Fq(u2) ↪→ Fq(u):

X(E/Fq(u2))
j→X(E/Fq(u))

Nmq→ X(E/Fq(u2)).

The composition Nmq ◦j is multiplication by 2, so is an isomorphism on the prime-to-
2 part of X(E/Fq(u2)). Therefore, Nmq is surjective on the prime-to-2 parts. This
proves part (2), namely that CokerNmq is a 2-group. Bounds on its order will be
proven below.
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Since the prime-to-2p parts ofX(E/Fq(u)) andX(E/Fq(u2)) have the same order,
they are isomorphic via Nmq. We will prove that the kernel of Nmq has odd order
and that the cokernel is non-trivial if (q−1)/d is odd. For these assertions, we consider
the diagram of descent sequences:

0 �� E(Fq(u))/2E(Fq(u)) ��

��

Sel2(E(Fq(u))) ��

��

X(E/Fq(u))2 ��

��

0

0 �� E(Fq(u2))/2E(Fq(u2)) �� Sel2(E(Fq(u2))) �� X(E/Fq(u2))2 �� 0,

where the vertical maps are norms.
Suppose that (q− 1)/d is even. The Selmer group calculations recalled above show

that if r is the rank of E(Fq(u2)), then the diagram above is isomorphic to

0 �� Fd/2+r+2
2

��

��

Fd
2

��

��

X(E/Fq(u))2 ��

��

0

0 �� Fr+2
2

�� Fd/2
2

�� X(E/Fq(u2))2 �� 0

and the middle vertical map is surjective. It follows that the right vertical map is also
surjective. On the other hand, considering the rows shows that the right-hand groups
have the same order, so they are isomorphic via the vertical map, in other words

Nmq : X(E/Fq(u))2 →X(E/Fq(u2))2

is an isomorphism. A chase using the diagram

0 �� X(E/Fq(u))2 ��

��

X(E/Fq(u))2n
2 ��

��

X(E/Fq(u))2n−1

��
0 �� X(E/Fq(u2))2 �� X(E/Fq(u2))2n

2 �� X(E/Fq(u2))2n−1

and induction on n shows that

Nmq : X(E/Fq(u))2∞ →X(E/Fq(u2))2∞

is injective.
Matters are slightly more complicated when we assume that (q − 1)/d is odd. In

this case, the Selmer group calculations recalled above show that that the descent
diagram is isomorphic to

0 �� Fd/2+r+2
2

��

��

Fd−2
2

��

��

X(E/Fq(u))2 ��

��

0

0 �� Fr+2
2

�� Fd/2
2

�� X(E/Fq(u2))2 �� 0

and the middle vertical map has cokernel of order 4. This shows that the cokernel of
the right vertical map has order at most 4. On the other hand, considering the rows
shows that the orders of the right-hand groups have ratio 4, and we conclude that the



EXPLICIT POINTS ON THE LEGENDRE CURVE II 277

right-hand vertical map is injective. The same argument as in the case (q − 1)/d is
even then shows that

Nmq : X(E/Fq(u))2∞ →X(E/Fq(u2))2∞

is injective. If it were surjective, it would be an isomorphism, and therefore induce an
isomorphism on the 2-torsion subgroups, but we just saw this is not the case, so the
cokernel is non-trivial.
Summarizing the last three paragraphs, we have that the 2 part of kerNmq is

always trivial, and the 2 part of CokerNmq is non-trivial when (q− 1)/d is odd. This
completes the proof that KerNmq is a p-group, i.e., part (3).
We saw in Theorem 8.1 that for fixed p and f , I is independent of q. Since the

kernel and cokernel of Nmq are p-groups and 2-groups, respectively, it follows from
parts (1), (2), and (3) that the cokernel of Nmq is independent of q, and the order of
the kernel goes to infinity with q. Finally, if pf ≡ 1 (mod 4) and we take q = p2f , then
(q − 1)/d = (pf + 1)/2 is odd and the cokernel of Nmq is non-trivial. This completes
the proof of part (4) and the proof of the theorem. �

10. Correspondences and points

It is proven in [9, Section 11] that the Néron model Ed → P1 of E/Fq(u) is birational
to the quotient of a product of curves. This implies the BSD conjecture for E/Fq(u)
and it allows us to compute the rank of E(Fq(u)) in terms of Jacobians over finite
fields. It also allows us to “explain” the explicit points of this paper and [9] via certain
correspondences. In this section, we briefly explain how this plays out for d = pf + 1
and d = 2(pf − 1).
Let Ed be the Néron model of E/Fq(u), so the function field of Ed is generated by

x, y, u with relation y2 = x(x+ 1)(x+ ud).
Let Cd be the smooth projective curve with affine model

zd + x2 + 1 = 0

and let Dd be defined by
wd + y2 + 1 = 0.

There is an action of μd × μ2 on Cd ×Dd given by

ζd(x, y, z, w) = (x, y, ζdz, ζ−1
d w) (−1)(x, y, z, w) = (−x,−y, z, w).

The quotient has function field generated by x2, xy, and zw. It is birational to Ed

with the quotient map φ : Cd ×Dd → Ed given by

φ∗(x, y, u) = (−x2 − 1, xy(x2 + 1), zw).

The rational quotient map Cd×Dd���Ed can be used to compute the zeta-function
of Ed and the L-function of E/Fq(u). The fact that Ed is dominated by a product of
quotients of Fermat curves “explains” why the L-function of E is expressible in terms
of the Jacobi sums J(λ, χi) = J(χd/2, χi).
Let J = JCd

be the Jacobian of Cd. The results of [8] use the rational map φ to
prove that the rank of E(Fp(t1/d) is equal to the rank of the group of endomorphisms
of J which anti-commute with the action of μd. This group can also be identified with
a certain group of correspondences on Cd ×Dd.
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The geometry of this setup can be used to “explain” the explicit points of [9] and
this paper. Namely, when d = pf + 1, consider the graph of the pf -power Frobenius
Frpf : Cd → Dd. This anti-commutes with the μd action. Pushing it down via φ yields
the section corresponding to the point P0 of [8, Theorem 8.1].
When d is even, we have an automorphism ψ : Cd → Cd given by

ψ∗(x, z) = (x/zd/2, z−1).

When d = 2(pf − 1), the composition of ψ and the pf -power Frobenius gives a mor-
phism Cd → Dd which induces a homomorphism JCd

→ JDd
which anti-commutes

with the μd actions. Pushing the graph of this morphism down to Ed via φ leads to
the section associated to the point R0 of Section 6.
Note that Theorem 2.2 shows that E has points of infinite order over many exten-

sions Fq(t1/d), but we lack any explicit expression for their coordinates except when
d divides pf + 1 or 2(pf − 1). It would be very interesting to find a direct connection
between the balanced condition and special endomorphisms or correspondences on
Cd ×Dd which would provide explicit expressions for points of infinite order on E.

11. The case p = 2

The equation for the Legendre curve does not define an elliptic curve in characteristic
2. However, there is a curve E′ defined uniformly for all p which is isogenous to the
Legendre curve for all p > 2. Most of the results of this paper extend to E′ and
continue to hold in characteristic 2.
More precisely, let t′ and u′ be new indeterminates with u′d = t′, and let E′ be the

elliptic curve

(11.1) y′2 + x′y′ + t′y′ = x′3 + t′x′2

over Fp(t′). It is proven in [9, Lemma 11.1] that if p > 2 and we identify Fp(t′) and
Fp(t) by sending t′ to t/16, then E and E′ are 2-isogenous. If 16 is a dth power in
Fq, then we may identify Fq(u) and Fq(u′) (as extensions of Fp(t) = Fp(t′)) and in
this case E and E′ have the same L-function over Fq(u) and the same rank because
they are isogenous. We would like to make a more precise statement that holds over
Fq(u′) for all q.
To that end, we define a new Jacobi sum J ′o, where o ⊂ Z/dZ is an orbit for

multiplication by q. As before, we assume that o �= {0} and o �= {d/2} if d is even.
We keep the notations of Section 3.1 and define

J ′o = J(χi, χi),

where i is any element of o. This is well defined because J(χqi, χqi) = J(χi, χi).
The following theorem extends many of our results about E to E′, where they

continue to hold when p = 2.

Theorem 11.2. Let p be an arbitrary prime number, q a power of p, and d an integer
prime to p. Let K ′ = Fq(u′) where u′d = t′, and let E′ be the elliptic curve over K ′
defined by (11.1).

(1) The Hasse–Weil L-function of E′ over K ′ is

L(E′/K ′, T ) =
∏
o∈O

(
1− J ′2o T |o|

)
.



EXPLICIT POINTS ON THE LEGENDRE CURVE II 279

Here the product is over the set O of orbits o ⊂ Z/dZ for multiplication by q,
omitting the orbits {0} and {d/2} (if d is even).

(2) Let o ∈ O be an orbit and let e = d/ gcd(d, i) for any i ∈ o. Then J ′2o /q
|o| is

a root of unity if and only if p is balanced modulo e.
(3) If p > 2 and i ∈ o, then J ′o = χi(4)λ(−1)Jo.
(4) Suppose p = 2 and o ∈ O. If e = d/ gcd(d, i) for any i ∈ o and 2 is balanced

modulo e, then J ′2o = q|o|. If p = 2, then the rank of E′(Fq(u′)) is

∑
e|d
e>2

{
φ(e)
oe(q) if 2 is balanced modulo e,
0 otherwise,

where φ is Euler’s function and oe(q) is the order of q in (Z/eZ)×.
(5) Let E ′d → P1 be the Néron model of E′/Fq(u′). Let C′d = D′d be the smooth, pro-

jective (Fermat) curve over Fq defined by zd = x(1−x). Then Ed is birational
to the quotient of Cd ×Dd by the anti-diagonal action of μd.

Proof. The proofs are for the most part parallel to those of the corresponding state-
ments for E, so we will omit many details.
For (1), one may give a direct, elementary argument along the lines of the proof

of Theorem 3.1. Alternatively, one may use part (5) of this theorem and a geometric
analysis of the morphism (C′d × D′d)/μd���E ′d. Indeed, the inverse roots of the zeta
function of C′d are exactly the Jacobi sums J ′o and the inverse roots of the H2 part of
the zeta function of (C′d × D′d)/μd are the squares J ′2o . In some sense this “explains”
their appearance in the L-function of E′.
The proof of (2) is parallel to the first part of the proof of Proposition 4.1. Indeed,

Stickelberger’s theorem shows that the valuation of J ′o at the prime σa(p) is given by

−ν +
ν−1∑
j=0

〈
ai′pj

e

〉
+

〈
ai′pj

e

〉
+

〈−2ai′pj

e

〉
,

where i′ = i/ gcd(d, i), ν satisfies q|o| = pν , and the valuation of p is 1. It is then easy
to see that the valuations are all |o|/2 if and only if p is balanced modulo e.
Part (3) is [2, Exer. 40 in Chapter 2].
For part (4), if p = 2 and 2 is balanced modulo e, then by part (2), J ′2o /q|o| is a root

of unity. To see that it is 1, we may use Stickelberger’s congruence [2, Thm. 3.6.6] to
see that J ′o/q|o|/2 ≡ 1 modulo any prime of Q(μe) over 2, so that J ′o/q|o|/2 = ±1. The
rest of part (4) then follows from parts (1) and (2).
For (5), let C′d and D′d be given by zd = x(1 − x) and wd = y(1 − y), so that the

function field of the quotient (C′d×D′d)/μd is generated by x, y, and zw. The function
field of E ′d is generated by u′, x′ and y′ with relation y′2+x′y′+t′y′ = x′3+u′dx′2. It is
easy to see that the assignments u′ �→ zw, x′ �→ −(zw)d/y, and y′ �→ (zw)dx(1−y)/y
yield a well-defined isomorphism between the two function fields. (This is essentially
the example discussed in [8, Section 7].) �

We note that part (3) is an arithmetic reflection of the fact that the Fermat curve C′d
in part (5) is a twisted form of the Fermat curve Cd of the previous section. It follows
from part (3) that J ′2o = χi(16)J2

o . This relation between the inverse roots of the



280 RICARDO P. CONCEIÇÃO, CHRIS HALL AND DOUGLAS ULMER

L-functions of E and E′ is an arithmetic reflection of the identification Fq(u) = Fq(u′)
and the resulting isogeny between E and E′ when 16 is a d-th power in Fq

×.
We also note that if p > 2, d > 2 divides pf + 1, and q ≡ 1 (mod d), then 16 (and

indeed any integer) is a d-th power in Fq. Thus the rank result of [8, Thm. 7.5] can
be recovered from the theorem.
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