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1 Introduction

Evolutionary transitions in organisms from unicellularity to multicellularity
are thought to arise from trade-offs between benefits, costs and requirements.
The volvocalean green algae offer a model biological system for the study of
metabolite exchange. The algae are photosynthetic eukaryotes ranging in orga-
nization from individual cells to small groups of identical cells to large colonies
of cells that exhibit germ-soma differentiation. The somatic cells that comprise
these organisms have attached to them two flagella which yield propulsion im-
portant to chemotaxis and phototaxis. It has not been well researched, however,
how this collective flagellar beating stirs the fluid around the organism thereby
creating a higher rate of nutrient turnover not attainable by diffusive trans-
port alone. The study of this phenomenon is the primary goal of this research
project.

There are multiple reasons for choosing this particular group of organisms to
study. For one, they have all been well researched and studied. Much is already
known about Volvox in particular. Some examples of well researched facets of
the organism include its life cycle, its reproductive cycle, its mobility, the type
of environments in which it exists and where it can be found in nature. Also,
as physicists and mathematicians, we prefer to work with bodies and problems
that exhibit as much symmetry as possible in order to make the calculations and
models easier to work with. Almost everyone has heard the expression “spherical
cow”. The volvacalean green algae, and more importantly the species Volvox,
brandishes a spherical symmetry and thus it is a prime candidate with which
to study. The figure on the following page shows a few examples of the algae.

2 Goals

There were three primary goals to this semester long research project:

1. Understand the model that has been developed to determine the fluid flow
around a Volvox, a specific colony of the volvocalean green algae, and how
this model applies to the collective flagellar hydrodynamics that remove
the diffusive bottleneck thereby allowing for transitions to multicellularity.
(theory)
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Figure 1: Species of Volvocalean green algae spanning a large range in size. (A) the single-cell
Chlamydomonas reinhardtii, undifferentiated colonies (B) Gonium pectorale (8 cells) and (C)
Eudorina elegans (32), and those with germ-soma differentiation (D) Pandorina californica

(64), (E) Volvox carteri (∼1000) and (F) V. Rousseletii (∼2000).

2. Verify a relationship that has been found between the translational and
rotational velocity components such that

U

RΩ
= − cotα , (1)

where U is the translational velocity, Ω is the rotational velocity, R is
the radius of the Volvox and α is the angle that determines how stress is
directed with respect to lines of longitude on the Volvox. The apparatus
used to gather this data will include a darkfield illumination setup where
the central light rays that ordinarily pass through or around the speci-
men are blocked only allowing oblique rays to illuminate the specimen.
(experiment)

3. Apply this knowledge to a system of two Volvox organisms and determine
their interaction. (theory)

(a) Study the nearby swimming of pairs of Volvox. (experiment)

Fortunately, I joined a research group that had already developed a model
for the fluid flow around a single Volvox. Therefore, my first task was to un-
derstand the problem at hand and the methodology by which the model was
created by working through Martin Short’s derivation for the fluid flow around
the organism. The following arguments follow closely the method proposed by
Martin Short. Rather than re-deriving the results here, though, I will only
provide the main methods by which the solution was obtained.

3 Analysis

It has been found that a Volvox resides in the realm of low Reynolds num-
ber. The Reynolds number can be thought of as a ratio of the inertial forces to
the viscous forces. This indicates that in the low Reynolds number regime the
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viscous forces dominate and the inertial forces are of no serious consequence.
Moving through a low Reynolds fluid as a human would be comparable to swim-
ming in a pool of molasses. Since the Volvox resides in the low Reynolds number
regime, it is a well established fact that the fluid dynamical equations that gov-
ern the fluid flow can be approximated with confidence to be that of normal
Stokes flow

η∇2
u = ∇P . (2)

Here, η is the viscosity, u is the fluid velocity and P is the pressure. The fluid
that the Volvox prefers to live in (the ideal conditions being that of water mixed
with some additional minerals and vitamins) is an incompressible fluid, and thus
another equation that governs the fluid flow is the equation of incompressibility

∂

∂r
(r2ur) +

r

sin θ

∂

∂θ
(sin θuθ) +

r

sin θ

∂uφ

∂φ
= 0 . (3)

These are the fundamental equations that define the velocity of the fluid around
a swimming volvox that resides in the low Reynolds number regime.

Since the Volvox is approximately a spherical organism (remember the “spher-
ical cow”) the geometry of the problem suggests that spherical coordinates
should be used to solve the problem, and hence, the choice of spherical co-
ordinates to represent fluid incompressibility. Here, the coordinates are labeled
using the convention typically followed by physicists. That is, r is still mea-
sured from the origin, θ is the polar angle measured from the z-axis, and φ is
the azimuthal angle measured from the x-axis. Noting that the general solutions
to Laplace’s equation in spherical coordinates yields spherical harmonics (asso-
ciated Legendre functions multiplied by an exponential term) multiplied by a
function of the radius alone, one might expect that the overall fluid velocities
may take on a similar form. Therefore, the velocity component in the radial
direction was proposed to be

ur =

∞
∑

l=1

l
∑

m=0

Fl(r)P
m
l (w)eimφ . (4)

To determine what kind of form the angular velocity components are to take,
consider the fact that when all three components of velocity are placed into the
incompressibility equation, the spherical harmonics must still satisfy Legendre’s
equation, that is, the same spherical harmonics must be returned. Legendre’s
equation is

∂2y

∂θ2
+

cos θ

sin θ

∂y

∂θ
+

[

l(l + 1) −
m2

sin2 θ

]

y = 0 . (5)

After careful thought and some algebraic manipulation it was found that the
following choices allow this to occur
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uθ =

∞
∑

l=1

l
∑

m=0

Gl(r)
∂

∂θ
P m

l (w)eimφ , (6)

uφ =

∞
∑

l=1

l
∑

m=1

Gl(r)
im

sin θ
P m

l (w)eimφ . (7)

When these components are substituted into the incompressibility equation the
following relationship is found between the radial functions of the above expan-
sions

Gl(r) =
2Fl(r) + r

∂Fl(r)
∂r

l(l + 1)
(8)

The next step in the process requires a bit of imagination. Recalling the
vector identity for two curls of a vector field

∇× (∇×A) = ∇(∇ · A) −∇
2A , (9)

we find that for a vector field without a divergence (incompressible fluid flow)

∇
2A = −∇×∇× A . (10)

Also, note that the curl of a gradient is always zero. If we then take the curl of
both sides of Stokes’ equation we find

∇×∇×∇× u = 0 . (11)

At first glance this may not seem beneficial. We have reduced our problem of
solving a partial differential equation to that of solving a triple curl. However,
todays computing software is more than capable of reducing this problem even
further. Therefore, Mathematica was used to reduce this problem significantly.
After many Legendre polynomial identities were used and a power series solution
of the resulting differential equation was proposed the following resulted

Fl(r) = Alr
l+1 + Blr

l−1 + Clr
−l + Dlr

−l−2 . (12)

If one looks closely, it can be noted that a φ component of the velocity field
that is independent of φ still maintains compressibility if it is included in the
velocity profile. This is done to account for the absence of the m = 0 term in the
φ component of the velocity field. Upon substitution of this into the governing
equation and again proposing a power series solution of the resulting differential
equation one finds the following

Hl(r) = Elr
l + Ilr

−l−1 . (13)

We are now equipped with the solutions to the flow field in general. All that is
left is to apply the boundary conditions.
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To simplify the problem even further assume an azimuthal symmetry to the
geometry of the fluid flow. This approximation is valid because the Volvox
organism actually exhibits this characteristic. Also, assume that the Volvox
is swimming in the positive z direction with a speed U . If we place ourself
in a reference frame that is traveling with the Volvox at the origin it appears
as if the velocity of the fluid is −Uẑ as r goes to infinity. If we express this
velocity in spherical coordinates we can apply this as one boundary condition
to the velocity profile. The second boundary condition arises because the fluid
velocity in the radial direction at the surface of the organism must go to zero.
That is, fluid is not entering or exiting the organism at a high enough rate as to
disturb the velocity profile (the uptake rate of nutrients entering the organism
is insignificant when compared to the fluid flow). The final boundary condition
requires a little more ingenuity. One way to model the fluid motion around
the organism is to suppose that the self-propelled motion of the Volvox can be
described by the stress that the organism imposes on the fluid at its surface. We
can model this as an average force per unit area that is uniform over the surface
of the Volvox. Somatic cells, which the flagella are attached to, are distributed
uniformly around the exterior of organism. Each of these cells helps to propel the
organism by their collective flagellar beating. While this model hides the details
of the motion of the fluid due to the propulsion by the organism’s flagella (and
their associated beating frequencies, length and stroke characteristics) it still
provides an accurate description of the overall motion of the fluid. Therefore,
the final boundary conditions that must be imposed are those of the stress tensor
with the normal direction perpendicular to the surface of the Volvox acting in
the direction of φ and θ with the stress components being modeled by an average
force per unit area. These are the shear stresses at the surface of the organism.

σ−rθ = −
η

R

[

r
∂

∂r

(uθ

r

)

+
1

r

∂ur

∂θ

]

r=1
(14)

σ−rφ = −
η

R

[

r
∂

∂r

(uφ

r

)

+
1

r sin θ

∂ur

∂θ

]

r=1
(15)

In order to find the translational and the rotational velocities of the Volvox we
turn to the appropriate reciprocal theorems which transfer us from the reference
frame moving with the Volvox to one that is not. Rather than working through
all of the mathematics, which are not trivial and are quite involved, I will simply
quote the results.

ur

U
= −

(

1 −
1

r3

)

P1(w) −

∞
∑

l=2

(r−l
− r−l−2)

glPl(w)

g1
, (16)

uθ

U
= −

(

1 +
1

2r3

)

P 1
1 (w) +

∞
∑

l=2

(

(l − 2)r−l
− lr−l−2

) glP
1
l (w)

g1l(l + 1)
, (17)

uφ

U
= −2 tanα

∞
∑

l=1

r−l−1 (2l + 1)glP
1
l (w)

l(l + 1)(l + 2)g1
, (18)
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where

gl =

∫ 1

−1

P 1
l (w)dw , (19)

U =
τ cosαR

η

π

8
, (20)

−
1

g1
=

2

π
. (21)

This brings us to the conclusion of the first goal of the research project:
understanding the existing model in hopes that similar tactics may be employed
when attempting to solve a multiple body problem. I extend my gratitude to
Martin Short for all of his help in working through the model he developed. As
one can see, though, a result of this model is that there is a relationship between
the swimming speed and rotational speed of the organism. This ultimately
brings us to the second goal.

We find that the model predicts a relationship between the translational and
rotational swimming speeds of the Volvox as described below

U

Ω
= −R cotα . (22)

It would be beneficial then to try and verify this relationship experimentally.
Therefore an apparatus was constructed to take movies of individual and groups
of Volvox organisms swimming (see figure below). From these movies, the trans-
lational and rotational swimming speeds can be calculated and the prediction
made by the model can hopefully be verified. The apparatus includes an analog
ccd camera with an adjustable lens. This camera lies on an adjustable track.
The lens is directed at a platform that has an adjustable x, y and z base upon
which a cuvet that contains the specimen is placed. A ring light is used to obtain
a darkfield image of the swimming organism. Thus far, two preliminary movies
have been taken in order to obtain the best possible images. Data collection
will hopefully begin within the next few weeks. By the end of the semester,
sufficient data should be collected and reduced so that an accurate plot reveals
a cogent relationship between the translational and rotational velocities.

The final and significantly more difficult goal of this research project was
to model the swimming behavior of pairs of Volvox organisms. There were two
approaches to solving this problem that were considered. The first method was
to borrow approximation results from similar problems that have been solved
in the realm of sedimenting particles. The second method was to attempt to
solve the problem in its entirety borrowing from the methods stated above for
the single body problem. I chose the latter method to begin the study of the
two body problem.

If you recall, this method relied upon finding a coordinate system which
exhibited the appropriate symmetries of the problem. A solution was then
proposed by expanding the velocity components of the fluid in terms of the
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Figure 2: Image of a swimming Volvox taken from a preliminary movie.

coordinate system’s natural harmonic functions (in spherical coordinates these
were the spherical harmonics). The governing equations were reduced using
vector identities and boundary conditions were applied to obtain a final solu-
tion. I attempted the same approach with the two body problem. Thus, an
appropriate coordinate system needed to be used that exhibited the symmetries
of the two body problem. It turns out that bispherical coordinates produce the
required symmetries. Bispherical coordinates uses the variables η, θ and φ to
label the coordinates. Surfaces of constant η are described by spheres that lie
on the z axis with centers at a cot η and have radius a

sinh η
. This coordinate sys-

tem is rather difficult to visualize. However, pictures of the coordinate system
signify that the required symmetries existed. Therefore, the next step in the
process was to discover what the natural harmonic functions of the coordinate
system were. To do this, the technique of separation of variables was used to
solve Laplace’s equation in the new coordinate system. Laplace’s equation in
bispherical coordinates where f is the function is given by

sin θ

(cosh η − cos θ)3

[ ∂

∂θ

( sin θ

cosh η − cos θ

∂f

∂θ

)

+
∂

∂η

( sin θ

cosh η − cos θ

∂f

∂η

)

+
∂

∂φ

( csc θ

cosh η − cos θ

∂f

∂φ

)]

= 0

(23)
To separate variables, propose the function

f(θ, η, φ) = (cosh η − cos θ)
1

2 X(θ)Y (η)Z(φ) . (24)

Substituting this function into Laplace’s equation and then reducing using the
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standard techniques (no trivial calculation) one finds that, like spherical co-
ordinates, the solution is an expansion of spherical harmonics multiplied by a
function of η. But this is exactly what was obtained for the one body prob-
lem! Analogously to the one body problem, the next step in the process was
to propose a solution of the fluid velocity profile as an expansion of the har-
monic functions and plug these solutions into the governing equations. Thus,
an expression for the equation for incompressibility in bispherical coordinates
was needed and is as follows

(cosh η − cos θ)2

a sin θ

[

sin θ
∂

∂η

( uη

(cosh η − cos θ)2

)

+
∂

∂θ

( sin θuθ

(cosh η − cos θ)2

)]

+
cosh η − cos θ

a sin θ

∂uφ

∂φ
= 0 .

(25)
Similar to the one body problem, in order for incompressibility to be maintained
when derivatives are taken we must get back the same spherical harmonics. We
can therefore use Legendre polynomial identities to reduce the equations. After
many different trial functions were proposed it was found that the following
functions satisfied the conditions regarding their spherical harmonics

uη = (cosh η − cos θ)2
∞
∑

l=1

l
∑

m=0

F (η)P m
l (w)eimφ , (26)

uθ = (cosh η − cos θ)2
∞
∑

l=1

l
∑

m=0

G(η)
∂

∂θ
P m

l (w)eimφ , (27)

uφ =
∞
∑

l=1

l
∑

m=0

G(η)P m
l (w)

( im(cosh η − cos θ)

sin θ

)

eimφ . (28)

We seem to be close to obtaining a solution to the two body problem. Everything
we have done thus far has followed directly from the one body problem. This
may seem rather strange because problems typically get exponentially more
difficult when more degrees of freedom are inserted. If intuition served the reader
correctly, an uneasy feeling would have built up by this point in preparation for
mathematical hardship. This feeling, in fact, would be well justified. If we
follow the same prescription as for the one body problem of reducing Stokes’
equation to that of a triple curl the resulting equations are ghastly. The curl of
a vector in bispherical coordinates is unforgiving, let alone three curls, and is
unreasonable to reduce. Let us suppose, however, that by some stroke of luck
we reduce the equations to something manageable. The problem of applying
boundary conditions still exists. It was not entirely difficult finding expressions
for the fluid dynamical stress tensor in spherical coordinates. I have had some
difficulty of finding the expressions in bispherical coordinates, however. I could,
in theory, learn how to transform from one coordinate space into another by
reading through a differential geometry text and applying these rules to the
stress tensor. This task seems rather pointless, though, until we find a way to
reduce the equations that are obtained after three curls of the vector field are
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taken in bispherical coordinates. If this cannot be accomplished the boundary
conditions will never have reason to be applied.

4 Conclusion

We seem to be at a standstill then. Solving the problem exactly seems to be
unreasonable provided the methods outlined above. While some insight to the
problem was gained, finding an exact solution to the two body problem has so
far proved unsuccessful. I move, therefore, to study the approximation methods
that have been outlined for sedimenting particles. The main method that has
traditionally been used is the method of reflections. This method will hopefully
provide an accurate description of the two body problem and extend itself to
the many body problem.

9


