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The purpose of studying representations of finite groups is to better understand abstract
groups. We will be studying the representations of the symmetric group Sn, and how they
relate to the partitions of n. More specifically, we look at how we can use p-irreducible
partitions to help determine the irreducible representations of Sn.

Sn is a group whose elements are the permutations π of the set {1, . . . , n}. These elements
can be written as the product of disjoint cycles, and the cycle type of π is an expression of
the form

(1m1 , 2m2 , ..., nmn),

where mi is the number of cycles of length i in π. We can also give the cycle type in terms
of a partition of n. This is simply a sequence

λ = (λ1, ..., λl),

where the λi’s are weakly decreasing and such that
∑l

i=1 λi = n.

What is interesting about these partitions and cycle types is their relation to the conjugacy
classes of Sn. The set of all elements conjugate to an element π in Sn is called the conjugacy
class of π. Since conjugacy is an equivalence relation, the distinct conjugacy classes partition
Sn. One shows that two elements in Sn are in the same conjugacy class if and only if they
have the same cycle type. Thus we get a natural bijective correspondence between the
partitions of n and the conjugacy classes of Sn.

Since we want to look at the partitions of n to establish the irreducible representations of Sn,
we must first see how to construct the Specht modules which determine these representations.
To do so, we need these definitions:

Definition 0.1 Let V be a vector space over a field F and G be a group. Then V is a
G-module or module if there is a group homomorphism

ρ : G → GL(V ),

where GL(V) is the set of all invertible linear transformations of V to itself.

Definition 0.2 Let V be a G-module. A submodule of V is a subspace W that is closed
under the action of G, i.e.,

w ∈ W ⇒ gw ∈ W ∀g ∈ G.

Definition 0.3 A nonzero G-module V is reducible if it contains a non-trivial submodule
W . V is called irreducible if it not reducible. Intuitively, one should think of an irreducible
module as one that cannot be broken down into smaller modules.

The following definitions help to create the Specht module, a specific type of module that
we must use in studying the representations of Sn.
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Notation. If λ = (λ1, λ2, . . . , λl) is a partition of n, then we write λ ` n.

Definition 0.4 Suppose λ ` n. The Ferrers diagram, or shape, of λ is an array of n boxes
having l left-justified rows with row i containing λi dots for 1 ≤ i ≤ l.

EXAMPLE. If our partition λ = (5, 5, 3, 2, 1), then the corresponding Ferrers diagram of λ
is

• • • • •
• • • • •
• • •
• •
• .

Definition 0.5 A Young tableau of shape λ is an array t obtained by replacing the dots of
the Ferrers diagram of λ with the numbers 1, 2, . . . , n bijectively.

EXAMPLE. If our partition λ = (2, 1), then the possible tableaux of shape λ are the
following:

t =

1 2
3 ,

1 3
2 ,

2 1
3 ,

2 3
1 ,

3 1
2 ,

3 2
1 .

Definition 0.6 Two λ-tableaux t1 and t2 are row equivalent, t1 ∼ t2, if corresponding rows
of the two tableaux contain the same elements. A tabloid of shape λ, or λ-tabloid, is then

{t} = {t1 | t1 ∼ t}.

where the shape of t is λ.

EXAMPLE. If we have the λ-tableau

t =

2 3
1 ,

then the corresponding λ-tabloid is

{t} = {
2 3
1 ,

3 2
1 }.

An element π ∈ Sn acts on a tableau t by sending each number in t through π individually.
For example,

(132)

2 3
1 =

1 2
3 .

This induces an action on a tabloid {t} by letting

π{t} = {πt}.
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Definition 0.7 Suppose λ ` n. Let

Mλ = C{ {t1} ,. . . , {tk} },

where {t1}, . . . , {tk} is a complete list of λ-tabloids. Then Mλ is called the permutation
module corresponding to λ. Sn acts on Mλ by permuting {t1}, . . . , {tk}.

Definition 0.8 Suppose that the tableau t has rows R1, R2, . . . , Rl and columns C1, C2, . . . , Ck.
Then

Rt = SR1 × SR2 × · · · × SRl

and

Ct = SC1 × SC2 × · · · × SCk

are the row-stabilizer and column-stabilizer of t, respectively.

EXAMPLE. If we have the λ-tableau

t =

3 6 4 1
2 5 ,

then

Rt = S{1,3,4,6} × S{2,5}

and

Ct = S{2,3} × S{5,6} × S{4} × S{1}.

We know that every π ∈ Sn can be written as a product of transposition τi, π = τ1τ2 · · · τk.
For the following definition, we will need to make use of

κt := C−
t =

∑
π∈Ct

sgn(π)π,

where sgn(π) = (−1)k. Since the parity (mod 2) of the number of transpositions needed to
write π is well-defined, it follows that (−1)k is also well-defined.

Definition 0.9 If t is a tableau, then the associated polytabloid is et = κt{t}.

EXAMPLE. Again, if

t =

3 6 4 1
2 5 ,

then

κt = 1− (23)− (56) + (23)(56).
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So

et = [1− (23)− (56) + (23)(56)]{t}
= {t} − (23){t} − (56){t}+ (23)(56){t}
= {t} − {(23)t} − {(56)t}+ {(23)(56)t}

= {
3 6 4 1
2 5 } − {(23)

3 6 4 1
2 5 } − {(56)

3 6 4 1
2 5 }+ {(23)(56)

3 6 4 1
2 5

= {
3 6 4 1
2 5 } − {

2 6 4 1
3 5 } − {

3 5 4 1
2 6 }+ {

2 5 4 1
3 6 }.

Definition 0.10 For any partition λ, the corresponding Specht module, Sλ, is the submodule
of Mλ spanned by the polytabloids et, where t is of shape λ.

These Sλ constitute a full set of irreducible Sn-modules if char(F ) = 0. If char(F ) = p, one
still defines Specht modules, but they are usually not irreducible. We will be studying what
conditions guarantee that Sλ over Fp is irreducible.

In addition to looking at these Specht modules, we also want to focus on the diagram of λ
(or its Young tableau), and what we can deduce from various properties about lengths of
rows and columns in the tableau.

In the most intuitive terms, the hook of a node v = (i, j) (the box in the ith row and the
jth column) in the diagram of λ is the node v together with the set of nodes to the right of
v in row i, and the set of nodes below v in column j. And thus the hooklength of v is just
the number of such nodes. A rim hook shall be defined as being obtained by projecting a
regular hook along diagonals onto the boundary of the diagram of λ.

EXAMPLE. If we have a λ-tableau with v = (1, 1)

v

,

then we get the corresponding hook of v (denoted by the set of nodes with dots inside)

• • • • • •
•
•
•
• ,
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and corresponding rim hook of v (denoted by the set of nodes with crosses inside)

× × ×
× ×

× ×
× ×
× .

We should be able to see that a diagram of a partition λ is completely determined by its
first-column hooklengths hi. The method we use to construct λ from these hooklengths is
as follows:

λk = hk, λk−1 = hk−1 − 1, . . . , λ1 = h1 − k + 1,

where λi is the length of the ith row of the diagram of λ. Notice that in doing so, we get a
partition λ from each sequence of strictly decreasing nonnegative integers

β1 > β2 > · · · > βr

by letting

λi := βi + i− r, 1 ≤ i ≤ r.

Such β-numbers can be conveniently recorded on an abacus. Imagine an abacus lying on a
table with runners going north-south. We assume there are p runners, called the 0th runner,
1st runner, . . ., (p-1)th runner, from left to right. The possible bead positions are determined
by assuming that all the beads are initially at the top and that we move beads only through
one bead width at a time. Label the bead positions as below:

0 1 · · · p− 2 p− 1
p p + 1 · · · 2p− 2 2p− 1
· · · ·
· · · ·
· · · ·

A bead configuration is associated with a set of β-numbers (and hence a partition) by letting
the actual bead positions determine the β-numbers. What we aim to show is that there is
a direct correlation between what happens when we move beads on the abacus and what
happens to the diagram of the corresponding partition. In particular, we want to see that the
removal of a rim p-hook from a partition occurs if and only if a bead in the corresponding
abacus is moved up one row on the same string, where a p-hook is simply a hook with
hooklength a prime p.

Theorem 0.12 The removal of a rim p-hook from a partition occurs if and only if a bead
in the corresponding abacus is moved up one row on the same string.

PROOF. Assume that we have removed a rim p-hook from a partition. Let αn denote the
length of the nth row of the partition. Call αi the length of topmost row involved in the
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rim p-hook that was removed. Then for all rows j involved in the rim p-hook except the
bottom-most row k,

αj 7→ αj+1 − 1,

since row j is necessarily shortened to one less than the length of row (j + 1) by definition
of a rim p-hook. We know by definition the following:

αj = βj + j − r,

where βn denotes the position of the nth bead of our abacus. So

αj+1 − 1 = βj+1 + j + 1− r − 1

= βj+1 + j − r.

So we can determine to where we map each βj:

βj = αj − j + r

7→ αj+1 − 1− j + r

= βj+1 + j − r − j + r

= βj+1.

Now we need to determine to where we map βk. So first we will determine to where we map
αk. From our map, we can see that for each row j, αj is shortened by αj − (αj+1− 1), which
equals αj − αj+1 + 1. So the total number of nodes removed by the non-kth rows of the
p-hook is

k−1∑
j=i

(αj − αj+1 + 1) = (αi − αi+1 + 1) + · · ·+ (αj − αj+1 + 1) + · · ·+ (αk−1 − αk + 1)

= αi − αk + 1 · (k − 1− i + 1)

= αi − αk + k − i.

Since a p-hook removes p total nodes, clearly αk must be shortened by
p− (αi − αk + k − i). Thus,

αk 7→ αk − (p− [αi − αk + k − i])

= αk − p + αi − αk + k − i

= αi + (k − i)− p.

Using this fact we get

βk = αk − k + r

7→ αi + k − i− p− k + r

= αi − i + r − p

= βi − p.

Since we have that βj 7→ βj+1 and that βk 7→ βi − p, this is equivalent to having moved the
ith bead on our abacus up one row on the same string.
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To prove the converse, assume that we have moved the ith bead on our abacus up one row
on the same string. Then we have that βj 7→ βj+1 and that βk 7→ βi − p. So

αj = βj + j − r

7→ βj+1 + j − r

= αj+1 − (j + 1) + j − r

= αj+1 − 1.

And

αk = βk + k − r

7→ βi − p + k − r

= αi − i + r − p + k − r

= αi + (k − i)− p.

So we have removed a rim hook. To show that we have removed a rim p-hook, we again note
that the number of nodes removed by the non-kth rows of the rim hook is

k−1∑
j=i

(αj − αj+1 + 1),

and the number of nodes removed by the kth row is

p− (αi − αk + k − i).

So the total number of nodes removed by our rim hook is the sum of these two quantities:

k−1∑
j=i

(αj − αj+1 + 1) + p− (αi − αk + k − i) = αi − αk + k − i + p− (αi − αk + k − i)

= αi − αk + k − i + p− αi + αk − k + i

= p.

Since we have removed p nodes with our rim hook, we must have removed a rim p-hook. �

Definition 0.13 A diagram of a partition λ is called a p-core if it does not contain any
p-hooks.

Corollary 0.14 A partition is a p-core if and only if no bead in the corresponding abacus
can be moved up one row on the same string.

PROOF. Assume a partition is a p-core. Then by definition the partition contains no p-
hooks, so we cannot remove one. Since we cannot remove a p-hook, we cannot move a bead
in the corresponding abacus up one row on the same string by the preceding theorem. So
no bead in the corresponding abacus can be moved up one row on the same string.
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Conversely, assume no bead on our abacus can be moved up one row on the same string. So
we cannot remove a p-hook from our partition by the preceding theorem. So our partition
is a p-core. �

Definition 0.15 A node (a, b) is p-isolated if there exists a node (a, x) in the same row as
(a, b) and a node (y, b) in the same column as (a, b) such that the p-part (greatest power of
p dividing the node) of (a, x) and the p-part of (y, b) are different than the p-part of (a, b).

Definition 0.16 A partition λ is p-irreducible if λ has no p-isolated nodes.

The p-irreducible partitions are the ones which will most help us in the representation theory
of the symmetric group. We give a theorem here by Fayers and part of one direction of the
proof, because it is paramount in our understanding of these partitions. In short, it says
that a Specht module Sλ over Fp is irreducible if and only if the corresponding partition λ
is p-irreducible.

The proposition below characterizes p-irreducible partitions in terms of their abaci.

Proposition 0.17 The following are equivalent:
(1) λ is a p-irreducible partition.
(2) There exist some i and j such that:

(a) λ(k) = ∅ whenever i 6= k 6= j,
(b) if position i + pa on runner i is unoccupied, then any position

b > i + ea not on runner i is unoccupied,
(c) if position j + pc on runner j is occupied, then any position d < j + ec

not on runner j is occupied,
(d) λ(i) is a p-regular p-irreducible partition,
(e) λ(j) is a conjugate p-restricted p-irreducible partition.

PROOF. We want to prove that (2) implies (1). So suppose that λ has an abacus config-
uration as described in (2), and suppose that hλ(a, c) is divisible by p, say hλ(a, c) = ps.
We claim that this means that there is an unoccupied space exactly s spaces above the
bead corresponding to the beta-number βa on the same runner. Hence this bead must lie
either on runner i or runner j. We shall suppose that it lies on runner i (the case where it
lies on runner j may be addressed by replacing λ with its conjugate). We claim that, for
b = 1, . . . , λ′

c we have
vp(hλ(b, c)) = vp(hλ(a, c)),

where vp is the p-part of the node. Write d = λ′
c. Since there is a node (a, c) it is clear that

d ≥ a. Since there is an unoccupied space exactly s spaces above the bead corresponding to
βa, this space is in position βa − ps on runner i. Then this is our i + pa referred to by (2b).
So any position b > i + pa = βa − ps not on runner i is unoccupied. We want to show that
the beads corresponding to β1, . . . , βd all lie on runner i, so it suffices to show that β1, . . . , βd

are all greater than βa − ps. Since our β numbers are in strictly decreasing order, it suffices
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to show that βd > βa − ps. Assume that

βd ≤ βa − ps.

This implies

λd − d + r ≤ λa − a + r − ps

⇒ λd − d ≤ λa − a− ps

⇒ λd + a + ps ≤ λa + d.

Since we know that hλ(a, c) = ps, we can explicitly determine λa + d:

λa + d = c− 1 + a− 1 + ps = c− 2 + a + ps.

So now

λd + a + ps ≤ λa + d

⇒ λd + a + ps ≤ c− 2 + a + ps

⇒ λd ≤ c− 2.

But

λd = λλ′
c
≥ c.

So we have

c ≤ λd ≤ c− 2,

which is clearly a contradiction. So we must have βd > βa − ps. So β1, . . . , βd are all greater
than βa − ps = i + pa, which implies that β1, . . . , βd all lie on runner i by condition (2b). So
if we let M be the number of unoccupied spaces less than βd on the abacus, we see simply
that βd = M + r − d, and so we have

λd = M,

λd−1 = M + p(τd−1 − τd) + p− 1,
...

λ1 = M + p(τ1 − τd) + (d− 1)(p− 1).

Put y = τa − s + d− a + 1; then we claim that, for x = 1, . . . , d,

hλ(x, c) = ehτ (x, y),

this will then be sufficient, since τ is a (p, p)-Carter partition, so we have

ve,p(hλ(x, c)) = 1 + vp(hτ (x, y)) = 1 + vp(hτ (a, y)) = ve,p(hλ(a, c)).

First we claim that τ ′y = d; this follows easily from the fact that λ′
c = d. Verifying the above

equality is then a formality. �

Using conclusions like those made in Fayers theorem, in the future, we look to learn more
about the representations of the symmetric group. The following idea of generating functions
is a central part of what we plan to do in the near future.
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Definition 0.18 Given a sequence of complex numbers an = a0, a1, a2, . . ., the corresponding
generating function is the power series

f(x) =
∑
n≥0

anx
n.

The generating function for partitions

∑
n≥0

p(n)xn =
∏
i≥1

1

1− xi
,

where p(n) is the number of partitions of n, is known. One can see that this is the generating
function for partitions by looking closely at the function:

∑
n≥0

p(n)xn =
∏
i≥1

1

1− xi
(1)

=
∏
i≥1

(1 + xi + x2i + x3i + · · · )(2)

= (1 + x + x2 + x3 + · · · )(1 + x2 + (x2)2 + · · · )(1 + x3 + (x3)2 + · · · ) · · ·(3)

= 1x0 + 1x1 + 2x2 + 3x3 + 5x4 + 7x5 + · · · .(4)

We can see from line (3) how the coefficients of this function count the partitions of each n.
When i = 1, the coefficients are counting the number of ways the number 1 appears in the
partition of n; when i = 2, the coefficients are counting the number of ways the number 2
appears in the partition of n; and so on. For instance, the partitions of 3 are (3), (2,1), and
(1,1,1). The (3) comes from the x3 term when i = 3, the (2,1) comes from the x2 term when
i = 2 multiplied by the x term when i = 1, and the (1,1,1) comes from the x3 term when
i = 1.

There are known generating functions for many types of partitions, including the number
of partitions of n in which each term is odd, even, a square, a prime, etc. What we aim
to do is to determine a generating function for p-irreducible partitions, for this will lead to
irreducible Specht modules and further to irreducible representations of Sn.

Before we do this, however, we need to determine more properties of partitions, including
the generating function for p-cores. To help accomplish this, we look at a problem from the
first chapter of I.G. MacDonald’s Symmetric Functions and Hall Polynomials. It outlines
the formation of such a generating function.
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I. SYMMETRIC FUNCTIONS
#8

(A)

Proposition 0.19 Let λ, µ be partitions of length ≤ m such that λ ⊃ µ, and such that λ−µ
is a rim hook of length p. Let δm = (m−1, m−2, . . . , 1, 0) and let ξ = λ+δm, η = µ+δm. Then
η is obtained from ξ by subtracting p from some part ξi of ξ and rearranging in descending
order.

PROOF. Let µ = (µ1, . . . , µk) and let λ = (µ1 + α1, . . . , µk + αk, αk+1, . . . , αk+l). Now let j
be the first row of the rim hook (i.e., αj is the first nonzero α), and let h be the last row of
the rim hook. We know that there are two cases: either l > 0 and thus the rim hook extends
to the last row of λ, which implies that k + l = h; or l = 0, and thus the length of λ and the
length of µ are equal. The following statements where i 6= h hold true for both cases.

Consider i such that i < j. Then it is clear that

ηi = ξi.

Now consider i such that j ≤ i < h. By definition

αi = λi − λi+1 + 1

= µi + αi − µi+1 − αi+1 + 1.

This implies

µi = µi+1 + αi+1 − 1

= λi+1 − 1.

So

ηi = µi + (m− i)

= λi+1 − 1 + (m− i)

= λi+1 + (m− i− 1)

= ξi+1.

Next consider i such that i > h. Again, in either case

ηi = µi + (m− i)

= 0 + (m− i)

= m− i

= 0 + m− i

= αi + (m− i)

= ξi.

Our final case is for the hth row. We can see that

ηh = µh + (m− h).
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However, we must now split into two cases.

CASE 1: l = 0. Then µh = λh−αh. In this case, we can see that p is equal to the difference
in hooklengths of (j, 1) and (h, 1) + αh. In other words,

p = λj − j + λ′
1 − 1 + 1− (λh − h + λ′

1 − 1 + 1) + αh

= λj − j − λh + h + αh.

So

ηh = µh + (m− h)

= λh − αh + (m− h)

= λj − j − (λj − j − λh + h + αh) + m

= λj − j − p + m

= λj + (m− j)− p

= ξj − p.

CASE 2: l > 0. Then µh = 0 and k + l = h. In this case, we can see that p is equal to the
hooklength of (j, 1). In other words,

p = λj − j + λ′
1 − 1 + 1

= λj − j + k + l

= λj − j + h.

So

ηh = µh + (m− h)

= 0 + (m− h)

= m− h

= λj − j − (λj − j + h) + m

= λj − j − p + m

= λj + (m− j)− p

= ξj − p.

So in either case, ηh = ξj − p. Thus η is obtained from ξ by subtracting p from ξj of ξ and
rearranging in descending order. �

(B)

Definition 0.20 With the same notation as in #8(a), suppose that ξ has mr parts ξi

congruent to r modulo p, for each r = 0, 1, . . . , p − 1. These ξi may be written in the form

pξ
(r)
k + r (1 ≤ k ≤ mr), where ξ

(r)
1 > ξ

(r)
2 > . . . > ξ

(r)
mr ≥ 0. Let λ

(r)
k = ξ

(r)
k −mr + k, so that

λ(r) = (λ
(r)
1 , . . . , λ

(r)
mr) is a partition. The collection λ∗ = (λ(0), λ(1), . . . , λ(p−1)) is called the

p-quotient of the partition λ.



14

Proposition 0.21 The preceding definition of the p-quotient of λ is equivalent to our
previous one involving an abacus.

PROOF. We first claim that the parts ξi from Definition 2 correspond exactly to our β-
numbers in the abacus definition. We know that ξi = λi + m − i by definition. Here, m is
simply equal to our r from the abacus definition (i.e., the number of β-numbers). To see
the abacus correspondence, note that if we plot the ξi on an abacus with p runners labeled

0, 1, . . . , p− 1 we get that if ξi = pξ
(r)
k + r, then ξi is on the ξ

(r)
k th row of the rth runner (if

we start labeling rows at 0). Also, from Definition 2 it is clear that plotting this way puts
mr beads on the rth runner. So the kth row of the rth partition in the p-quotient, which is

given by λ
(r)
k = ξ

(r)
k −mr + k, is the row of the kth bead on the rth runner minus the total

number of beads on the rth runner plus the number of beads greater in value than the kth
bead on the rth runner. In other words, this formula exactly counts the number of empty
positions on the rth runner less than the kth bead on the rth runner. This is how we define
the p-quotient in our abacus definition, so the two are equivalent. �

Definition 0.22 The m numbers ps + r, where 0 ≤ s ≤ mr − 1 and 0 ≤ r ≤ p− 1, are all

distinct. Let us arrange them in descending order, say ξ̃1 > · · · > ξ̃m, and define a partition

λ̃ by λ̃i = ξ̃i −m + i (1 ≤ i ≤ m). This partition λ̃ is called the p-core of λ. Both λ̃ and λ∗

(up to cyclic permutation) are independent of m, provided that m ≥ l(λ).

If λ = λ̃ (i.e. if λ∗ is empty), the partition λ is called a p-core. For example, the only 2-cores
are the ’staircase’ partitions δm = (m− 1, m− 2, . . . , 1).

Following G.D. James, we may conveniently visualize this construction in terms of an abacus.
The runners of the abacus are the half-lines x ≥ 0, y = r in the plane R2, where r =
0, 1, 2, . . . , p − 1, and λ is represented by the set of beads at the points with coordinates

(ξ
(r)
k , r) in the notation used above. The removal of a rim hook of length p from λ is recorded

on the abacus by moving some bead one unit to the left on its runner, and hence the passage
from λ to its p-core corresponds to moving all the beads on the abacus as far left as they
will go.

Recall that we proved this in Theorem 0.12.

This arithmetical construction of the p-quotient and p-core is an analogue for partitions of
the division algorithm for integers (to which it reduces if the partition has only one part).

(C)

The p-core of a partition λ may be obtained graphically as follows. Remove a rim hook of
length p from the diagram of λ in such a way that what remains is the diagram of a partition,
and continue removing rim hooks of length p in this way as long as possible. What remains

at the end of this process is the p-core of λ̃ of λ, and it is independent of the sequence of rim
hooks removed. For by (a) above, the removal of a rim hook of length p from λ corresponds to
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subtracting p from some part of ξ and then rearranging the resulting sequence in descending
order; the only restriction is that the resulting set of numbers should be all distinct and
non-negative.

Recall that we proved this exact statement in Fayers’s Proposition.

(D)

The p-quotient of λ can also be read off from the diagram of λ, as follows. For s, t =
0, 1, . . . , p− 1 let

Rs = {(i, j) ∈ λ : λi − i ≡ s(modp)},

Ct = {(i, j) ∈ λ : j − λ′
j ≡ t(modp)},

so that Rs consists of the rows of λ whose right-hand node has content congruent to s modulo
p, and likewise for Ct. Recall that the content of a node (i, j) is equal to j− i, so since j = λi

and i = λ′
j in the right-hand node, the preceding statement is true by definition. If now

(i, j) ∈ Rs ∩ Ct, the hook-length at (i, j) is

h(i, j) = λi + λ′
j − i− j + 1 ≡ s− t + 1(modp)

and therefore p divides h(i, j) if and only if t ≡ s + 1(modp).

On the other hand, if ξi = pξ
(r)
k + r as in part (b), then the hooklengths of λ in the ith

row are the elements of the sequence (1, 2, . . . , ξi) after deletion of ξi − ξi+1, . . . , ξi − ξm. In
other words, there are no nodes of λ in the ith row with hooklength equal to ξi − ξk, where
i + 1 ≤ k ≤ m. In other words we have no hooklengths equal to λi − λk + (k − i). To see
this, note the following:

h(i, λk) = λi + λ′
k − i− λk + 1

≥ λi + k − i− λk + 1

= λi − λk + (k − i) + 1

> λi − λk + (k − i)

= λi + k − i− λk

> λi + (λk + 1)′ − i− λk − 1 + 1

= h(i, λk + 1).

This eliminates m− i numbers, leaving ξi− (m− i) = λi + (m− i)− (m− i) = λi numbers -
exactly the number of nodes in the ith row. And hence those divisible by p are the elements

of the sequence (p, 2p, . . . , pξ
(r)
k ) after deletion of p(ξ

(r)
k − ξ

(r)
k+1), . . . , p(ξ

(r)
k − ξ

(r)
mr). They are

therefore p times the hooklengths in the kth row of λ(r), and in particular there are λ
(r)
k

of them. In other words, there are no nodes of λ(r) in the kth row with hooklength equal

to ξ
(r)
k − ξ

(r)
j , where i + 1 ≤ j ≤ mr. In other words, we have no hooklengths equal to
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ξ
(r)
k − ξ

(r)
j + (j − k). To see this, again note the following:

h(k, ξ
(r)
j ) = ξ

(r)
k + ξ

(r)′

j − k − ξ
(r)
j + 1

≥ ξ
(r)
k + j − k − ξ

(r)
j + 1

= ξ
(r)
k − ξ

(r)
j + (j − k) + 1

> ξ
(r)
k − ξ

(r)
j + (j − k)

= ξ
(r)
k + j − k − ξ

(r)
k

> ξ
(r)
k + (ξ

(r)
j + 1)′ − k − ξ

(r)
j − 1 + 1

= h(k, ξ
(r)
j + 1).

This eliminates mr − k numbers, leaving ξ
(r)
k − (mr − k) = ξ

(r)
k −mr + k = λ

(r)
k numbers -

exactly the number of nodes in the k row of λ(r).

Since the ith row of λ corresponds to the kth row of λ(r), we have that if the ith row of λ is
in Rs, then the kth row of λ(r) is in Rs. So we get the following:

s ≡ λi − i(modp)

≡ ξi −m + i− i(modp)

≡ ξi −m(modp)

≡ pξ
(r)
k + r −m(modp)

≡ r −m(modp).

If we take this combined with the aforementioned condition for p dividing h(i, j) if and only
if t ≡ s + 1 (mod p), then it follows that each λ(r) is embedded in λ as Rs ∩ Cs+1, where
s ≡ r−m (mod p), and that the hooklengths in λ(r) are those of the corresponding nodes in
Rs∩Cs+1, divided by p. In particular, if m is a multiple of p (which we may assume without
loss of generality) then λ(r) = λ ∩Rr ∩ Cr+1 for each r (where Cp = C0).

(E)

From (c) and (d) it follows that the p-core (respectively, p-quotient) of the conjugate partition
λ′ is the conjugate of the p-core (respectively, p-quotient) of λ.

(F)

For any two partitions λ, µ we shall write

λ ∼p µ

to mean that λ and µ have the same p-core.
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Proposition 0.23 As above, let ξ = λ+ δm, η = µ+ δm, where m ≥ max(l(λ), l(µ)). Then
it follows from (a) and (b) that λ ∼p µ if and only if η ≡ wξ (mod p) for some permutation
w ∈ Sm.

PROOF. Assume λ ∼p µ. Then λ and µ have the same p-core. By the way we defined
p-core in (b), this means that for every r, mr is equal for ξ and η. So it seems that η ≡ ξ
(mod p). Now conversely assume that η ≡ wξ (mod p) for some permutation w ∈ Sm. Then
the result clearly follows. �

Also, from (e) above it follows that λ ∼p µ if and only if λ′ ∼p µ′.

(G)

From the definitions in (b) it follows that a partition λ is uniquely determined by its p-core

λ̃ and its p-quotient λ∗. Since |λ| = |λ̃| + p|λ∗|, the generating function for partitions with

a given p-core λ̃ is ∑
eµ=eλ

t|µ| = t|
eλ|P (tp)p

where P (t) =
∏

n≥1(1 − tn)−1 is the partition generating function. Note that the p on the
inside of the parentheses accounts for the fact that each node in the p-quotient accounts for
p nodes in the actual partition, and that the p on the outside of the parentheses accounts
for the fact that there are p p-quotients. (This can again be visualized as the p runners on
the abacus.)

Hence the generating function for p-cores is∑
t|
eλ| = P (t)/P (tp)p

=
∏
n≥1

(1− tnp)p

1− tn
.

In particular, when p = 2, we obtain the identity∑
m≥1

tm(m−1)/2 =
∏
n≥1

1− t2n

1− t2n−1
.

Learning what we have from this problem in the first chapter of MacDonald’s Symmetric
Functions, we can now proceed toward a major goal: that is, to find the generating function
for p-irreducible partitions.

Doing this will require a number of smaller steps beforehand. First, we want to determine
the generating function for the number of p-irreducible partitions with a given p-core, where
the only nontrivial runner1 is the ith runner, as described in the Fayers paper. Furthermore,

1This is tantamount to the only nontrivial p-quotient.
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we want to determine the generating function for the number of p-irreducible partitions with
a given core, where the only nontrivial runner2 is the jth runner. From these two functions,
I think it will be possible to determine the generating function for the total number of
p-irreducible partitions with a given p-core.
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