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1. The Power Method and the Contraction Mapping
Theorem

Understanding the following derivations, definitions, and theorems may
be helpful to the reader.

The Power Method

Let A be a symmetric n x n matrix with eigenvalues |λ1| > |λ2| ≥ |λ3| ≥
|λ4| ≥ ... ≥ |λn| ≥ 0 and corresponding orthonormal eigenvectors ~u1, ~u2, ~u3, ..., ~un.
We call λ1 the dominant eigenvalue, and ~u1 the dominant eigenvector. The
Power Method is a basic method of iteration for computing this dominant
eigenvector. The algorithm is as follows:

1. Choose a unit vector, ~x0.

2. Let ~y1 = A~x0.

3. Normalize, letting ~x1 = ~y1
‖~y1‖ .

4. Repeat steps 2 and 3, letting ~yk = A~xk−1, until ~xk converges.
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The following shows that the limit of this sequence is the dominant eigen-
vector, provided that (~x · ~u1) is nonzero.

Let ~x ∈ Rn. Because the eigenvectors of A are orthonormal and therefore
span Rn, we can write: ~x =

∑n
i=1(αi~ui), where αi ∈ R. Then multiplying by

the matrix, A, we find:

A~x =
∑n
i=1(αiA~ui) =

∑n
i=1(αiλi~ui)

A2~x =
∑n
i=1(αiAλi~ui) =

∑n
i=1(αiλ

2
i~ui)

...Ak~x =
∑n
i=1(αiλ

k
i ~ui).

By factoring λk1, we obtain:

Ak~x = λk1
∑n
i=1 αi(

λi
λ1

)k~ui = λk1α1~u1 + λk1
∑n
i=2 αi(

λi
λ1

)k~ui.

So since |λ2| ≥ |λi| for all i = 2, 3, ..., n, we have that

Ak~x
λk1

= α1~u1 +O(λ2

λ1
)k

as k →∞.

Definition: Metric Space

A set of elements, X, is said to be a metric space if to each pair of elements
u, v ∈ X, there is associated a real number d(u, v), the distance between u
and v, such that:

1. d(u, v) > 0 for u, v distinct,

2. d(u, u) = 0,

3. d(u, v) = d(v, u),

4. d(u,w) ≤ d(u, v) + d(v, w) (The Triangle Inequality holds). [5]

2



Definition: Complete Metric Space

Let X be a metric space. X is said to be complete if every Cauchy se-
quence in X converges to a point of X.

Definition: Contraction

Let X be a metric space. A transformation, T : X → X, is called a contrac-
tion if for some fixed ρ < 1,

d(Tu, Tv) ≤ ρd(u, v) for all u, v ∈ X. [5]

The Contraction Mapping Theorem

Let T be a contraction on a complete metric space X. Then there exists
exactly one solution, u ∈ X, to u = Tu. [5]

Note: We leave the proof of this theorem to the discussion of our specific
example below.

2. A contraction for finding the dominant eigenvector

Let A be a symmetric n x n matrix with eigenvalues |λ1| > |λ2| ≥ |λ3| ≥
|λ4| ≥ ... ≥ |λn| ≥ 0 and corresponding orthonormal eigenvectors ~u1, ~u2, ~u3, ..., ~un.
Let ~x, ~y ∈ Rn. Because the eigenvectors of A are orthonormal and therefore
span Rn, we can write: ~x =

∑n
i=1(αi~ui) and ~y =

∑n
i=1(βi~ui) with αi, βi ∈ R.

These can also be defined as: αi = (~x · ~ui), βi = (~y · ~ui).

The Contraction

Define the transformation T = A
λ1

. Then we have the following:

T~x = α1~u1 +
∑
i>1 αi(

λi
λ1

)~ui
T~y = β1~u1 +

∑
i>1 βi(

λi
λ1

)~ui
T~x− T~y = (α1 − β1)~u1 +

∑
i>1(αi − βi)( λiλ1

)~ui.
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Now, consider ‖T~x − T~y‖. In order to have a contraction, we want some
0 < k < 1 such that ‖T~x − T~y‖ < k‖~x − ~y‖. To find this, we will use
‖T~x− T~y‖2. Then we want our k such that ‖T~x− T~y‖2 < k2‖~x− ~y‖2.

Since the ~ui ’s are orthonormal, we find that

‖T~x− T~y‖2 = (α1 − β1)2 +
∑
i>1((αi − βi)2( λi

λ1
)2).

In the case that β1 = α1,

‖T~x− T~y‖2 =
∑
i>1((αi − βi)2( λi

λ1
)2)

≤ (λ2

λ1
)2 ∑

i>1((αi − βi)2)

= (λ2

λ1
)2‖~x− ~y‖2

so, ‖T~x− T~y‖2 ≤ (λ2

λ1
)2‖~x− ~y‖2.

Then ‖T~x− T~y‖ ≤ |λ2

λ1
|‖~x− ~y‖.

Therefore, when β1 = α1, we have T as a contraction with k = |λ2

λ1
|.

The Fixed Point

Let ~x0 ∈ Rn be our initial guess for finding an eigenvector. Define:

V = {~y ∈ Rn|(~y · ~u1) = ( ~x0 · ~u1)}.

(ie, V is the set of vectors such that β1 = α1). Then T maps V back into V .
Because this set is a closed subset of Rn, and Rn is a complete metric space,
V is also complete. Then by the Contraction Mapping Theorem, there is
exactly one ~yf ∈ V such that ~yf = T ~yf . It follows (from the below proof)
that ~yf = ( ~x0 · ~u1)~u1 is the unique fixed point.

We now prove the Contraction Mapping Theorem in our context, as men-
tioned in Part 1.

Proof:

(a) ”Uniqueness”: The first thing we need to show is that the fixed point of
our contraction is unique. Suppose ~u = T~u and ~v = T~v. Then ‖~v − ~u‖ =
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‖T~v − T~u‖. But then, ‖T~v − T~u‖ ≤ |λ2

λ1
|‖~v − ~u‖. So by substitution,

‖~v − ~u‖ ≤ |λ2

λ1
|‖~v − ~u‖. But then ‖~v − ~u‖ = 0, so ~v = ~u. Thus, there is

only one fixed point, ~yf .

(b) ”Existence”: Next, we want to show that there exists a fixed point at all.
Again, let ~x0 be our initial guess. Define ~xm = T ~xm−1. Then we have:

‖ ~xm − ~xm+1‖ = ‖T ~xm−1 − T ~xm‖ ≤ |λ2

λ1
|‖ ~xm−1 − ~xm‖ ≤ ... ≤ |λ2

λ1
|m‖ ~x0 − ~x1‖.

Therefore, for n > m, we see that
‖ ~xm − ~xn‖ ≤ ‖ ~xm − ~xm+1‖+ ...+ ‖ ~xn−1 − ~xn‖

≤ |λ2

λ1
|m‖ ~x0 − ~x1‖+ ...+ |λ2

λ1
|n−1‖ ~x0 − ~x1‖

= ‖ ~x0 − ~x1‖|λ2

λ1
|m(1 + |λ2

λ1
|+ |λ2

λ1
|2 + ...+ |λ2

λ1
|n−m−1)

≤ ‖ ~x0 − ~x1‖
|λ2
λ1
|m

1−|λ2
λ1
|
.

Note that since 0 < |λ2

λ1
| < 1, we replaced the geometric sum with the sum of

the infinite series. Now we see that {xk} forms a Cauchy sequence, and thus
converges to an element of V since V is complete. Call the limit ~x. Then T
is a contraction, and hence continuous, so ~x is the fixed point, since:

~x = limn→∞~xn = limn→∞T~xn−1 = T (limn→∞~xn−1) = T~x.

(c) ”The fixed point x is ~yf = ( ~x0 · ~u1)~u1”: Finally, we want to find the fixed
point for our particular contraction, T = A

λ1
. Consider T ( ~x0 · ~u1)~u1. This is

A
λ1

( ~x0 · ~u1)~u1 = ( ~x0 · ~u1)~u1. Then this is the fixed point.

The Schwartz Quotient

Because we do not know λ1, we must find an adequate approximation. For
this, we use the Schwartz quotient. Consider a positive symmetric matrix A.
We define the Schwartz quotient, Λ(m), as follows:

Λ(m) = (A
m+1 ~x0·Am ~x0

Am ~x0·Am ~x0
)

We show that this converges to λ1, provided α1 = ( ~x0 · ~u1) 6= 0.
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Λ(m) = (A
m+1 ~x0·Am ~x0

Am ~x0·Am ~x0
)

= λ1

α2
1+

∑n

i=2
(
λi
λ1

)2m+1α2
i

α2
1+

∑n

i=2
(
λi
λ1

)2mα2
i

≤ λ1,

since λi
λ1
< 1 for each i = 2, ..., n

But also,

Λ(m) = λ1

α2
1+

∑n

i=2
(
λi
λ1

)2m+1α2
i

α2
1+

∑n

i=2
(
λi
λ1

)2mα2
i

≥ λ1
α2

1

α2
1+

∑n

i=2
(
λi
λ1

)2mα2
i

≥ λ1
α2

1

α2
1+(

λ2
λ1

)2m
∑n

i=2
α2
i

= λ1
α2

1

α2
1+(

λ2
λ1

)2m(1−α2
1)

(Notice: α2
1 +

∑n
i=2 α

2
i =

∑n
i=1 α

2
i = ‖ ~x0‖2 = 1, since ~x0 is normalized.)

So we find that

λ1
α2

1

α2
1+(

λ2
λ1

)2m(1−α2
1)
≤ Λ(m) ≤ λ1,

and thus,

Λ(m) = λ1 +O(λ2

λ1
)2m.

Notice that for a negative symmetric matrix, the inequalities are reversed,
though the end result remains unchanged. Also note that the asymptotic
conclusion

Λ(m) = λ1 +O(λ2

λ1
)2m

holds without the assumption that A is definite. This follows by use of a
finite geometric series argument based on the explicit formula

Λ(m) = λ1

α2
1+

∑n

i=2
(
λi
λ1

)2m+1α2
i

α2
1+

∑n

i=2
(
λi
λ1

)2mα2
i

.
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Then we define a new set of transformations Sm : V → V such that Sm =
A

Λ(m) . By applying Sm to A and normalizing, we iterate to find ~yf , a proce-
dure which converges to the dominant eigenvector, ~u1, as in the case with
the original mapping.

Note: There are two manners of doing this iteration. In the way we analyze
below, call this Version I, we iterate the Schwartz quotient until it is sat-
isfactorily close to the dominant eigenvalue, and then we iterate using the
corresponding Sm to find the dominant eigenvector. However, in the exam-
ple below, we use what we will call Version II of the iteration. We found
the corresponding Sm for each iteration of the Schwartz quotient, and thus
with each iteration, the transformation was different. While this version of
the iteration still converges to the dominant eigenvector, finding the rate of
convergence is more difficult than that of the first version due to the nature
of this type of iteration. In the following sections, we will find the rate of
convergence of Version II.

Recall: T ~x0 = A
λ1

( ~x0) = α1~u1 +
∑
i>1 αi(

λi
λ1

)~ui

Now we find that, using Version I:

Sm( ~x0) = A
Λ(m) ( ~x0) = α1

λ1

Λ(m) ~u1 +
∑n
i=2( λi

Λ(m) )αi~ui
Tm(~x0)− Smm( ~x0) = α1(1− λ1

Λ(m) )
m~u1 +

∑
i>1 αi[(

λi
λ1

)m − ( λi
Λ(m) )

m]~ui
‖Tm(~x0)− Smm( ~x0)‖2 = α2

1(1− λ1

Λ(m) )
2m +

∑
i>1 α

2
i [(

λi
λ1

)m − ( λi
Λ(m) )

m]2

= α2
1(1− λ1

Λ(m) )
2m +

∑
i>1 α

2
i (
λi
λ1

)2m[1− ( λ1

Λ(m) )
m]2

Then

‖Tm(~x0)− Smm( ~x0)‖ = O(1− λ1

Λ(m) )
m

But, recall:

Λ(m) = λ1 +O(λ2

λ1
)2m

So
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‖Tm(~x0)− Smm( ~x0)‖ = O(1− λ1

λ1+O(
λ2
λ1

)2m
)m

= O(λ2

λ1
)2m

Now,

‖Smm( ~x0)− α1~u1‖ = ‖Smm( ~x0)− Tm(~x0) + Tm(~x0)− α1~u1‖
≤ ‖Smm( ~x0)− Tm(~x0)‖+ ‖Tm(~x0)− α1~u1‖

by the triangle inequality.

= O(λ2

λ1
)2m +O(λ2

λ1
)m

So,

‖Smm( ~x0)− α1~u1‖ = O(λ2

λ1
)m = ‖Tm(~x0)− α1~u1‖.

Then these transformations have the same rate of convergence.

3. Example

1) Consider the following 3× 3 matrix (found in [3], Ex. 4-2-1): −4 10 8
10 −7 −2
8 −2 3


This matrix has known eigenvalues

λ1 ≈ −17.895;
λ2 ≈ 9.470;
λ3 ≈ 0.425,

and corresponding eigenvectors

~u1 ≈ 〈0.6679,−0.6719,−0.32〉;
~u2 ≈ 〈0.6437, 0.30566, 0.7016〉;
~u3 ≈ 〈0.37358, 0.6746,−0.6366〉.
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Using the Schwartz Quotient to find the approximate eigenvalue, Λ(m), and
Version II of our fixed point mapping of the power method to find the ap-
proximate eigenvector, ~vm, and beginning with an initial guess ~x0 = 〈1, 1, 1〉,
we find:

m Λ(m) ~vm
1 6.15827 〈0.253216, 1.12, 1.133426〉
2 0.453015 〈0.920897,−0.352108, 0.16724〉
3 -7.96152 〈0.381492,−0.737348,−0.557〉
4 -14.1284 〈−0.786587, 0.594171, 0.168054〉
5 -16.7232 〈0.592227,−0.701714,−0.3961〉
6 -17.5553 〈−0.704775, 0.652672, 0.278051〉
7 -17.7978 〈0.6474,−0.6811,−0.3418〉
8 -17.8665 〈−0.6785, 0.6667, 0.3084〉
9 -17.8858 〈0.66224,−0.674558,−0.3262〉
10 -17.8912 〈−0.670892, 0.6705, 0.3168〉
11 -17.8927 〈0.66633,−0.6726,−0.3218〉

4. Monotonicity of Schwartz Quotients

In this section, we alter a proof found in Collatz [1] to find that in the two
cases of a symmetric, positive definite matrix or negative definite matrix,
the sequence of Schwartz Quotients, {Λ(m)}, where Λ(m) = (A

m+1 ~x0·Am ~x0

Am ~x0·Am ~x0
), is

monotone increasing or decreasing, respectively. This is also the behavior
observed in the preceding example, with an indefinite matrix.

Case 1: The positive definite symmetric matrix

Consider a matrix, A, which is positive definite. The m-th term in the
sequence of Schwartz Quotients is Λ(m) = (A

m+1 ~x0·Am ~x0

Am ~x0·Am ~x0
). Define a2m+1 =

Am+1 ~x0 · Am ~x0 and a2m = Am ~x0 · Am ~x0. Then Λ(m) = a2m+1

a2m
.

Note: In a similar manner, we define a2m−1 as (Am ~x0 · Am−1 ~x0), etc.
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Then, let Q1 = ‖a2m+1A
m ~x0 − a2mA

m+1 ~x0‖2. This value is obviously non-
negative. But then

Q1 = (a2m+1A
m ~x0 − a2mA

m+1 ~x0) · (a2m+1A
m ~x0 − a2mA

m+1 ~x0)

By the bilinearity of the inner product, this is

= (a2m+1A
m ~x0) · (a2m+1A

m ~x0)− (a2m+1A
m ~x0) · (a2mA

m+1 ~x0)−
(a2mA

m+1 ~x0) · (a2m+1A
m ~x0) + (a2mA

m+1 ~x0) · (a2mA
m+1 ~x0)

= (a2
2m+1a2m)− 2(a2m+1a2ma2m+1) + (a2

2ma2m+2)
= (a2

2ma2m+2)− (a2
2m+1a2m)

Then

(a2
2ma2m+2)− (a2

2m+1a2m) ≥ 0,

and hence

(a2
2ma2m+2) ≥ (a2

2m+1a2m).

Using this result, we find that

Q1

(a2
2ma2m+1)

= (
a2m+2

a2m+1

− a2m+1

a2m

) ≥ 0 (1)

since we assume A positive definite, and thus a2m+1 > 0.

Now define Q2 = (a2m+1A
m ~x0 − a2mA

m+1 ~x0) · (a2m+1A
m−1 ~x0 − a2mA

m ~x0).
Since A is positive, we know Q2 is non-negative. But then,

Q2 = a2
2m+1a2m−1 − 2a2

2ma2m+1 + a2
2ma2m+1

= a2m+1(a2m+1a2m−1 − a2
2m)

So, consider now Q2

a2m−1a2ma2m+1
. This gives us:

a2m+1

a2m
− a2m

a2m−1
≥ 0,

and thus
a2m+1

a2m

≥ a2m

a2m−1

(2)

Then by (1) and (2), we see that Λ(m) ≤ Λ(m+1). So we have shown that for
a positive definite matrix A, the sequence of Schwartz quotients is monotone

10



increasing.

Case 2: The negative definite symmetric matrix

An analogous result can easily be seen for a negative definite matrix, where
the ”≥” in (1) and (2) are replaced with ”≤” since A is negative. Thus
we find that in this case, the sequence of Schwartz quotients is monotone
decreasing.

Case 3: The indefinite symmetric matrix

Unfortunately, we have yet to show a similar result for the case of the indefi-
nite matrix. However, we know that the Schwartz quotients still converge to
the dominant eigenvalue, and the mapping converges in a similar way as in
the first two cases, which we now show for version II.

5. Convergence of the Fixed Point Mapping, Version II

Suppose A is a definite matrix and ~x0 is our initial guess. Note that, using
Version II of our fixed point mapping,

S1 ~x0 = A
Λ(1) ( ~x0) = α1

λ1

Λ(1) ~u1 +
∑n
i=2( λi

Λ(1) )αi~ui.

If we let this = ~x1, then in the next iteration,

~x2 = S2 ~x1 = A
Λ(2) ( ~x1) = α1

λ2
1

Λ(1)Λ(2) ~u1 +
∑n
i=2(

λ2
i

Λ(1)Λ(2) )αi~ui.

Continuing in this manner, we arrive at the m-th iteration,

Sm~xm−1 = α1
λm1

Λ(1)Λ(2)...Λ(m) ~u1 +
∑n
i=2(

λmi
Λ(1)Λ(2)...Λ(m) )αi~ui

Now,

‖∑n
i=2(

λmi
Λ(1)Λ(2)...Λ(m) )αi~ui‖2

=
∑n
i=2(

λ2m
i

(Λ(1)Λ(2)...Λ(m))2
)α2

i
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= 1
(Λ(1)Λ(2)...Λ(m))2

∑n
i=2 λ

2m
i α2

i

≤ λ2m
2

(Λ(1)Λ(2)...Λ(m))2
(1− α2

1)

Now, let 0 < k < 1 be such that k|λ1| > |λ2|. Because Λ(m) converges to λ1,
there exists some index, M , such that for all m ≥M ,

|Λ(m)| > k|λ1| > |λ2|.

Then for m > M ,

λ2m
2

(Λ(1)Λ(2)...Λ(m))2
= (

λ2M
2

(Λ(1)Λ(2)...Λ(M))2
)(

λ2m−2M
2

(Λ(M+1)...Λ(m))2
)

≤ (
λ2M
2

(Λ(1)Λ(2)...Λ(M))2
)( λ2

kλ1
)2m−2M = (

λ2M
2

(Λ(1)Λ(2)...Λ(M))2
)(kλ1

λ2
)2M( λ2

kλ1
)2m

= O( λ2

kλ1
)2m as m→∞.

Since (
λ2M
2

(Λ(1)Λ(2)...Λ(M))2
)(kλ1

λ2
)2M is independent of m > M .

So we see that Sm~xm−1 approaches a multiple of ~u1, as does the usual power
method.

6. Applying Our Contraction to the Shifted Inverse
Power Method

The Shifted Inverse Power Method

The Shifted Inverse Power Method is an alteration to the Power Method
which finds the eigenvalue of a matrix closest to a chosen value rather than
finding the dominant eigenvalue. The basic idea is to choose a value, q, and
rather than using the original matrix, A, find (A−qI)−1 and apply the Power
Method to this shifted inverse matrix.

The matrix (A − qI)−1 has eigenvalues 1
λ1−q ,

1
λ2−q , ...,

1
λn−q and correspond-

ing eigenvectors ~u1, ..., ~un, where the λi’s are again the eigenvalues of A,
|λ1| > |λ2| ≥ |λ3| ≥ |λ4| ≥ ... ≥ |λn| > 0, and the ~ui’s are the corresponding
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orthonormal eigenvectors to the λi’s in A.

As in the original case, the Power Method will approximate the dominant
eigenvalue of (A− qI)−1, which is 1

λj−q , where λj is the closest eigenvalue of

A to q.

Our Contraction

The mapping used in this case is completely analogous to in the case of the
original Power Method.

We define Tinv by: Tinv~x = (λj− q)(A− qI)−1~x, where again λj is the closest
eigenvalue of A to q. For any ~x, we again have that ~x =

∑n
i=1(αi~ui) since the

eigenvectors span Rn. Then we have that:

Tinv~x = (λj − q)
∑n
i=1( 1

λi−q )(αi~ui)

= (λj−q
λj−q )αj ~uj +

∑
i 6=j(

λj−q
λi−q )(αi~ui)

= αj ~uj +
∑
i 6=j(

λj−q
λi−q )(αi~ui)

Taking the m-th iteration,

Tminv~x = αj ~uj +
∑
i 6=j(

λj−q
λi−q )m(αi~ui)

Since |λj − q| < |λi − q| for all i 6= j, we have that Tminv → αj ~uj as m→∞.

Notice that if we let (A− qI)−1 = B, then Tinv = B
γ1

, where γ1 is the domi-
nant eigenvalue of B. Then Tinv is equivalent to the original mapping, T , for
the matrix B.

Clearly, then, we can take the Schwartz quotients with respect to B =
(A − qI)−1, approximating the eigenvalues, 1

λi−q . Call the m-th Schwartz

quotient Λ
(m)
B . Now, with the m-th iteration, we make Tinv = B

Λ
(m)
B

. This is

completely analogous to the mapping for the original power method, and thus

has convergence O(
1

λk−q
1

λj−q
)m = O( λj−q

λk−q
)m where λj is the closest eigenvalue of

A to q and λk is the next closest.
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