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Abstract. We discuss the occurrence of numbers of the form pq for p, q prime
as the conductors of elliptic curves.
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1. Introduction

In this report we discuss some of the basics of the conductors of elliptic curves
with an eye towards the study of which numbers of the form pq for p and q prime
occur as the conductors of elliptic curves. In Section 2 we give a quick overview
of some of the basic terminology of elliptic curves. In Section 3 we discuss the
important reduction mod p map, paying special attention to the phenomenon of
bad reduction and the role of the conductor in measuring this. In this section we
also discuss the modularity theorem and mention the importance of the conductor in
the relation given by the Hasse-Weil conjecture between elliptic curves and modular
forms. In Section 4 we discuss some of the past work on elliptic curves of conductor
p and pq for p, q prime. In Section 5 we present a naive approach to looking for
patterns in the congruency classes of conductors of the form pq based on John
Cremona's table of known elliptic curves of conductor <130000. We use this table
to make and support a formal conjecture that no such simple pattern exists (the
source code for the SAGE script used in this section appears in Section 7). In
Section 6 we discuss the next steps to be taken in this project.

A special thanks to Kirti Joshi for advising this project and to the NSFG VIGRE
program for funding it.
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2. Elliptic Curves

An elliptic curve is a smooth, projective algebraic curve of genus one together
with a distinguished point lying on the curve that we use to de�ne a group law.
Any elliptic curve E can be given as the zero set of a cubic equation and if it's
possible to �nd such an equation with coe�cients in the �eld K then we say that E
is an elliptic curve de�ned over K and write E/K. If K is a �eld of characteristic
not equal to 2 or 3 then, up to projective transformation, any elliptic curve over K
can be given by an equation of the form

(2.1) E : y2 = x3 + ax + b

with a, b ∈ K. This is called the Weierstrass form [S, ch. 3].
If E/K is an elliptic curve then the points on E with coordinates contained in an

extension L/K form a group under the group law and we will denote this subgroup
by E(L) [S, ch. 3]. A question of fundamental importance in elliptic curves is,
for an elliptic curve de�ned over a number �eld K, what is the group structure
of E(K)? A seminal result, the Mordell-Weil theorem, states that this group is
�nitely generated [S, ch. 8]. For elliptic curves over Q, work by Lutz, Nagell, and
more recently Mazur, has �rmly established the possible structure of the torsion
subgroup of E(Q) and provided methods for calculating this subgroup on speci�c
curves [ST, ch. 2]. The question of the rank of E(Q), however, remains relatively
wide open, and more generally the question of the rank of E(K) for any number
�eld K. The latter is the subject of the Birch and Swinnerton Dyer conjecture,
a Millenium Prize problem and one of the most important unsolved problems in
number theory, which relates the rank of an elliptic curve to the order of the zero
of its associated L-function at s = 1 [W].

Elliptic curves also �nd signi�cant use in applied mathematics. They are used
heavily in cryptography due to the presumed di�culty of the discrete log problem
on an elliptic curve over a �nite �eld, and in a related vein they are also used in
factoring algorithms and primality tests [ST, ch. 4].

Here, we discuss the conductors of elliptic curves over Q with speci�c attention
to conductors of the form N = pq for p and q prime.

3. Conductors of Elliptic Curves

A common technique in the study of elliptic curves over Q is to consider them
as curves over the p-adic numbers - if E/Q is an elliptic curve then we can consider
the group E(Qp). A natural map that arises in this context is the reduction mod p
map: after a change of coordinates we can write an equation for E in Weierstrass
form as in (2.1) with a, b integers, and after taking a �minimal� such equation, we

can reduce the coe�cients mod p to obtain a curve Ẽ/Fp (indeed, by considering
a more general form of the elliptic curve equation we can �nd an equation that
is minimal at all primes). Note that any point on E(Qp) can be written uniquely
as [x : y : z] with each of x, y, and z contained in Zp and at least one in the
units group Z×p , and so reduction of the coordinates mod p makes sense and in

fact provides a homomorphism from E(Qp) to Ẽ(Fp). This restricts to a very

useful homomorphism E(Q) → Ẽ(Fp) - for instance, we can use it to determine
the structure of the torsion subgroup as it can be shown that if we restrict to the
m-torsion in E(Q) then this reduction mod p map becomes an injection (note that

this is contingent upon Ẽ being nonsingular) [S, ch. 7].
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An interesting question to ask is what happens when Ẽ is a singular curve? This
phenomenon is called bad reduction, and can occur in two ways: if Ẽ has a cuspidal
singularity then we call it additive reduction and if it has a nodal singularity we call
it multiplicative reduction. An elliptic curve can only have bad reduction at �nitely
many primes, namely those that divide its discriminant (though it is not necessarily
true that an elliptic curve given by aWeierstrass equation has bad reduction at every
prime dividing its discriminant - it may be possible to make a rational change of
variables to obtain a new Weierstrass equation whose discriminant is not divisible
by that prime) [S, ch. 7]. To understand the group structure of E(Q) it is important
to understand at which primes it has bad reduction - for instance, the terms used
in de�ning the curve's L-function, which as mentioned earlier is connected to the
rank of E(Q), di�er between primes where bad reduction occurs and primes where
it does not [W].

The information about the reduction of an elliptic curve is encoded in an invari-
ant called the conductor. If an elliptic curve has good reduction at p then p does
not divide N and if it has multiplicative reduction at p then p divides N exactly
once. For p ≥ 5 if the curve has additive reduction at p then p divides N exactly
twice [EGT]. For p = 2, 3 if the curve has additive reduction at p then ordpN ≥ 2.

The famous Taniyama-Shimura-Weil conjecture, now the Modularity Theorem,
and the closely related Hasse-Weil conjecture connect elliptic curves with modular
forms and the conductor plays an important role in this connection. More speci�-
cally, to any elliptic curve over Q of conductor N there is an associated cusp form
of weight two and level N obtained by using the coe�cients of its L-series in a
fourier series. Before this conjecture was proved one reason that the conductors
of elliptic curves were studied was to provide evidence for this conjecture: if you
could produce a list of elliptic curves of certain conductors then it could be matched
against a list of elliptic curves parameterized by modular functions. To this end
and following the work of Ogg [O], Setzer provides some theorems on the existence
and non-existence of elliptic curves of prime conductor [Se] and Hadano provides
similar theorems for elliptic curves of conductor 2apb [H]. We discuss their work in
the following section.

4. Literature Review

A theorem typical of the papers by Ogg, Setzer, and Hadano is the following:

Theorem 4.1 ([H, Thm. 1]). If none of the class numbers of the four quadratic

�elds Q(
√
±p), Q(

√
±2p) for a prime p ≡ 3 or 5 mod 8 is divisible by 3 then there

are no elliptic curves of conductor N = 2p.

The method of proof is generally as follows:

(1) Suppose we have such a curve and consider its 2-division �eld K (the small-
est extension of Q over which all 2-torsion points are de�ned). If the curve
is given by the equation y2 = f(x) then K is just the splitting �eld of f .
By studying the rami�cation of primes in K and its sub�elds, we �nd that
there must be a 2-torsion point de�ned over Q.

(2) Use the existence of a rational 2-torsion point to produce an integer solution
to a Diophantine equation.

(3) Show that this Diophantine equation can have no such solution.
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Of course, there are many ways in which this can vary. For instance, Setzer proves
the following:

Theorem 4.2 ([Se, Thm. 2]). Let p be a prime, p 6= 2, 3, 17. There is an elliptic

curve of conductor p over Q if and only if p = u2 + 64 for some rational integer u.
If p is of the form u2 + 64, there are, up to isomorphism, just two such curves.

To prove this theorem Setzer uses some of the methods above but then uses the
solution of a Diophantine equation to produce an elliptic curve with the desired
property.

There is an even more direct way to connect integer solutions of Diophantine
equations to the conductors of elliptic curves. Indeed, as mentioned earlier the
discriminant of a curve is tightly connected to the conductor and whether there is
an elliptic curve over Q with a given discriminant is determined by whether there
is a rational point on another elliptic curve whose equation is simply the formula
for the discriminant in terms of the coe�cients. Because we can make a rational
change of coordinates to reduce the power of a prime dividing the discriminant by
multiples of 12, there are only �nitely many discriminants we need to examine to
exhaust all possible discriminants for a given conductor. This is the approach taken
by Edixhoven, et al. in [EGT].

5. A Naive Approach

John Cremona has put together a table of known elliptic curves of conductors
N < 130000. One might hope that there would be a simple congruence pattern
in this data for either the conductors for which there are elliptic curves or for the
conductors for which there are no elliptic curves. In particularly, we have written a
SAGE script to search for a pattern in conductors of the form pq for p and q distinct
primes. Based on an examination of the tables using a computer program, we
conjecture that there is no such pattern in either case. We make formal statements
in Conjectures 5.1 and 5.2 and provide evidence for them produced by this script.
The source code of the script is available in Section 7.

Conjecture 5.1. Let p be a prime. Then for any n coprime to p and any a
coprime to n there exists a prime q such that pq ≡ a mod n and such that there are

no elliptic curves of conductor pq

Evidence below is based on Cremona's table of elliptic curves of conductor
N < 130000. For each prime 1 < p < 50 we �nd the �rst n such this conjec-
ture fails within Cremona's data, i.e. the �rst n coprime to p such that there is
some congruence class mod n with no representative in the list of possible conduc-
tors less than 130000 not correspoding to known elliptic curves.

p
Number of N = pq < 130000 with no
known elliptic curve of conductor N

First failure (fails mod n)

2 3392 491
3 2629 457
5 1703 257
7 1373 239
11 802 127
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p
Number of N = pq < 130000 with no
known elliptic curve of conductor N

First failure (fails mod n)

13 831 149
17 616 139
19 551 101
23 527 109
29 400 107
31 424 101
37 265 67
41 311 73
43 266 71
47 279 97

Conjecture 5.2. Let p be a prime. Then for any n coprime to p and any a coprime

to n there exists a prime q such that pq ≡ a mod n and such that there is an elliptic

curves of conductor pq.

p
Number of N = pq < 130000 with a
known elliptic curve of conductor N

First failure (fails mod n)

2 3101 463
3 1893 299
5 1157 163
7 752 109
11 614 109
13 398 83
17 354 83
19 330 89
23 216 61
29 208 53
31 150 37
37 225 59
41 138 43
43 167 49
47 123 29

6. Future Work

There are several avenues down which I would like to continue. The techniques
of Ogg, Setzer, and Hadano, should work for more speci�c primes of the form pq,
for instance, 3q. Hadano [H] covers 2q and suggests several other cases that would
yield easily to the same methods. I plan to try to work these out on my own as
well as check through the literature to see if I can �nd anything more building on
these techniques. Because of advances in computing power since this paper was
written, these same techniques may be usable to prove theorems that, along side
calculated data, will yield more existence and non-existence results for larger p and
q (in particular, class number calculations will be more reasonable to do in bulk).
The techniques of [EGT] also merit further investigation, though they seem at �rst
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glance much less generally applicable. A more thorough search in more recent
literature is also warranted.

The analysis of Cremona's tables for a pattern should be redone, this time also
considering class number as in the theorems of Ogg, Setzer, and Hadano.

Finally, I plan to learn more about modular forms in order to understand how
the Hasse-Weil conjecture can be used in this problem, speci�cally in regard to
raising level as in [R].

7. Source Code

Below we present the source code for searching for patterns in the gaps in Cre-
mona's table as discussed in Section 5. As the code for searching for patterns in
the conductors that appear is very similar, we do not include it here.

C=CremonaDatabase()

maxconductor=C.conductor_range()[1];

conductors=[];

for p in prime_range(1,maxconductor):

for q in prime_range(p,maxconductor/p):

n=p*q;

if (len(C.list((n,n)))==0):

conductors.append((n,p,q));

def withpfactor(p,L):

M=[];

for a in L:

if a[1]==p:

M.append(a);

elif a[2]==p:

M.append((a[0],a[2],a[1]));

return M;

def checkcongclasses(n, L):

foundclasses=[];

for a in L:

if mod(a[0],n) not in foundclasses:

foundclasses.append(mod(a[0],n));

return foundclasses;

for n in range(1,250):

if gcd (n,p)==1:

CC=checkcongclasses(n,S);

num_cc_coprime=0;

for a in CC:

if gcd(a,n)==1:

num_cc_coprime=num_cc_coprime+1;

if num_cc_coprime!=euler_phi(n):

print "!", n, num_cc_coprime, euler_phi(n);
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