
Theorem If p is a prime number which has remainder 1 when
divided by 4, then p can be written as a sum of two squares.

This theorem is hard to prove. We can attempt to check it by
listing the primes whose remainder is 1 when divided by 4 (5,
13, 17, 29, 37, 41, 53, . . .) and seeing if they are sums of two
squares, but this does not constitute a proof.

5 = 1 + 4

13 = 9 + 4

17 = 16 + 1

29 = 25 + 4

37 = 36 + 1

41 = 25 + 16

53 = 49 + 4
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Theorem If n is an integer, then n2 + n is even.

Greg’s response: I believe it because if n is even, then n2 is even
and n is even, and even plus even is even.

If n is odd, n2 is odd because odd times odd is odd, and your
adding it to an odd, so n2 + n is even.

Emily’s response: Because n2 + n = n(n + 1), and one of n and
n + 1 is even and the other odd, and odd times even is even.

Some criticisms from the class: haven’t proved the rules about
multiplying odd and even numbers

Fix this by actually setting n = 2k, and substituting into n2 + n,
gives us 4k2 + 2k = 2(2k2 + k).
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Proof the class came up with after much discussion:

First we need to define even and odd.

Definition: We define an integer n to be even if there exists an
integer k such that n = 2k. We define an integer n to be odd if
there’s an integer k such that n = 2k + 1.

Proof of theorem: Write n2 + n = n(n + 1). It is well-known
that every integer is either even or odd. There are two cases,
n = 2m or n = 2m + 1. For case 1,

n(n + 1) = 2m(2m + 1)

We claim that 2m(2m + 1) is even, because if k = m(2m + 1),
then by definition 2k is even and 2k = 2m(2m + 1). For case 2,

n(n + 1) = (2m + 1)(2m + 2) = 2(2m + 1)(m + 1)

This is also even, using k = (2m + 1)(m + 1). Thus it’s true.
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