Theorem If p is a prime number which has remainder 1 when divided by 4 , then p can be written as a sum of two squares.

This theorem is hard to prove. We can attempt to check it by listing the primes whose remainder is 1 when divided by 4 (5, $13,17,29,37,41,53, \ldots$) and seeing if they are sums of two squares, but this does not constitute a proof.

$$
\begin{aligned}
5 & =1+4 \\
13 & =9+4 \\
17 & =16+1 \\
29 & =25+4 \\
37 & =36+1 \\
41 & =25+16 \\
53 & =49+4
\end{aligned}
$$

Theorem If n is an integer, then $n^{2}+n$ is even.
Greg's response: I believe it because if n is even, then n^{2} is even and n is even, and even plus even is even.

If n is odd, n^{2} is odd because odd times odd is odd, and your adding it to an odd, so $n^{2}+n$ is even.

Emily's response: Because $n^{2}+n=n(n+1)$, and one of n and $n+1$ is even and the other odd, and odd times even is even.

Some criticisms from the class: haven't proved the rules about multiplying odd and even numbers

Fix this by actually setting $n=2 k$, and substituting into $n^{2}+n$, gives us $4 k^{2}+2 k=2\left(2 k^{2}+k\right)$.

Proof the class came up with after much discussion:

First we need to define even and odd.
Definition: We define an integer n to be even if there exists an integer k such that $n=2 k$. We define an integer n to be odd if there's an integer k such that $n=2 k+1$.

Proof of theorem: Write $n^{2}+n=n(n+1)$. It is well-known that every integer is either even or odd. There are two cases, $n=2 m$ or $n=2 m+1$. For case 1 ,

$$
n(n+1)=2 m(2 m+1)
$$

We claim that $2 m(2 m+1)$ is even, because if $k=m(2 m+1)$, then by definition $2 k$ is even and $2 k=2 m(2 m+1)$. For case 2 ,

$$
n(n+1)=(2 m+1)(2 m+2)=2(2 m+1)(m+1)
$$

This is also even, using $k=(2 m+1)(m+1)$. Thus it's true.

