$$
\begin{aligned}
& \text { If } x^{2}-3 x-4=0 \\
& \xrightarrow{\text { then }} x^{2}-3 x=4 \\
& (x(x-3)=4 \\
& x=2 \text { sind } x-3=2 \\
& x=2 \text { of } x=5
\end{aligned}
$$

$$
\left(\left(\begin{array}{l}
x^{2}-3 x-4=0 \\
(x-4)(x+1)=0 \\
\text { If } A B=0 \text {, then } A=0 \text { or } \\
\left.\begin{array}{l}
\text { tow do } x^{2}=0 \\
\text { yobs }=0 \\
x-4=0 \text { or } x+1=0 \\
x=4 \text { or } x=-1
\end{array}\right) ?
\end{array}\right.\right.
$$

Substitiong in, we get

$$
\begin{gathered}
4^{2}-3 \cdot 4-4=0 \\
(-1)^{2}-3 \cdot(-1)-4=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { If } x \text { is a number suchthat } \\
& \text { then } x^{2}-3 x-4=0 \\
& \text { sc } x^{2}+x-4 x-4=0 \text {, } \\
& \text { so } x(x+1)-4(x+1): 0 \text {, } \\
& \text { So }(x+1)(x-4)=0 \text {. } \\
& \text { For all } x, \quad(x-4) \overline{(x \cdot+1)=x^{2}+x-4 x-4=x^{2}-3 x-4} \text {. } \\
& \text { Assume } x \text { as } x^{5}-3 x-4=0 \text {. } \\
& \text { since } x^{2}-3 x-4=(x-4)(x+1) \text { and } 5 \\
& \text { then }(x-4)(x+1)=0
\end{aligned}
$$

$$
x^{2}-3 x-4=0
$$

Since and degree, at most 2 zappers $A+B$.
So try to wite $\left(x^{2}-3 x-4\right)=(x+C)(x+9)$.
yoda \ldots

$$
(x+4)(x-1)=0
$$

