Review of Complex Numbers

William McCallum

A complex number is a number of the form $a+b i$, where a and b are real numbers and $i=\sqrt{-1}$. A remarkable fact about complex numbers is that you can add, subtract, multiply, and divide them, and still get a number of the same form. This is not at all obvious when it comes to division: how can you express

$$
\frac{c+d i}{c^{\prime}+d^{\prime} i}
$$

in the form $a+b i$? (Answer this as an exercise.)
Another way of writing complex numbers is using the polar representation

$$
r(\cos \theta+i \sin t h e t a)
$$

We call this the polar representation because if we represent the number $a+b i$ as the point (a, b) in the plane, then r and θ are the polar coordinates of the same point, so

$$
a=r \cos \theta \quad \text { and } \quad b=r \sin \theta .
$$

Why should we bother to represent complex numbers this way? Well, another remarkable fact emerges when we try to multiply two complex numbers in polar form. If

$$
z=r(\cos \theta+i \sin \theta) \quad \text { and } \quad z^{\prime}=r^{\prime}\left(\cos \theta^{\prime}+i \sin \theta^{\prime}\right)
$$

then

$$
\begin{align*}
z z^{\prime} & =r r^{\prime}(\cos \theta+i \sin \theta)\left(\cos \theta^{\prime}+i \sin \theta^{\prime}\right) \tag{1}\\
& =r r^{\prime}\left[\left(\cos \theta \cos \theta^{\prime}-\sin \theta \sin \theta^{\prime}\right)+i\left(\sin \theta \cos \theta^{\prime}+\cos \theta \sin \theta^{\prime}\right)\right] \tag{2}\\
& =r r^{\prime}\left[\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right)\right] \tag{3}
\end{align*}
$$

To get (3) we used the standard trig identities for sums of angles

$$
\begin{align*}
\sin \left(\theta+\theta^{\prime}\right) & =\sin \theta \cos \theta^{\prime}+\cos \theta \sin \theta^{\prime} \tag{4}\\
\cos \left(\theta+\theta^{\prime}\right) & =\cos \theta \cos \theta^{\prime}-\sin \theta \sin \theta^{\prime} \tag{5}
\end{align*}
$$

Notice that (3) is in the form of a complex number whose absolute value is $r r^{\prime}$ and whose argument (angle with the positive real axis) is $\theta+\theta^{\prime}$. So multiplication of complex numbers give us a wonderful new interpretation (and way of remembering) the identities (4) and (5): they are simply telling us that when you multiply two complex numbers you add their arguments.

This interpretation also gives a partial explanation of the identity

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta, \tag{6}
\end{equation*}
$$

since it tells us that $\cos \theta+i \sin \theta$ behaves like $e^{i \theta}$. When you multiply $e^{i \theta}$ and $e^{i \theta^{\prime}}$ you also add θ and θ^{\prime} because of the exponent laws. For a real explanation of (6) you need calculus or power series, as in the explanations that some of you found on the web.

