In teems of the equation

$$
y=2^{x}
$$

explain why the "vertical tail" of graph appears to shift to the right by 10 every time the y-range is multiplied by 1000 .

$$
2^{10} \cong 1000 \quad\left|\begin{array}{c|}
\text { sind of } y=\text { (x04 } \\
\text { to } \\
\text { he in by } \\
\text { is } y=f(x+a)
\end{array}\right|
$$

So x increases by y increases by a factor of 1000 Look at $\frac{2^{x}}{1000}$ and 2^{x-10} $2^{x} 2^{-10}=\frac{2^{x}}{2^{10}} \simeq \frac{2^{x}}{1000}$

Why 2^{x} beats x^{10}
Calculus
Suppose two funchons slant at

Use his idea to prove 2^{x} beats x (ie $2^{x}>x$ for all x past a (pertain point)
To prov $2^{x}>x^{10}$ for all x past a cerkin point, keep taking derivative of x^{10} $10 x^{9}, 10 \cdot 9 \cdot x^{8}, 10 \cdot 9 \cdot 8 \cdot x^{7}, \cdots, 10!$

