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Abstract. Let A be the inverse limit of the p-part of the ideal class groups in a Zr
p-

extension K∞/K. Greenberg conjectures that if r is maximal, then A is pseudo-null

as a module over the Iwasawa algebra Λ (that is, has codimension at least 2). We
prove this conjecture in the case that K is the field of p-th roots of unity, p has

index of irregularity 1, satisfies Vandiver’s conjecture, and satisfies a mild additional
hypothesis on units. We also show that if K is the field of p-th roots of unity and r
is maximal, Greenberg’s conjecture for K implies that the maximal p-ramified pro-p-
extension of K cannot have a free pro-p quotient of rank r unless p is regular (see also

[LN]). Finally, we prove a generalization of a theorem of Iwasawa in the case r = 1
concerning the Kummer extension of K∞ generated by p-power roots of p-units. We
show that the Galois group of this extension is torsion-free as a Λ-module if there is

only one prime of K above p and K∞ contains all the p-power roots of unity.

Let K be a number field, let p be an odd prime number, and let A(K) be the
p-Sylow subgroup of the ideal class group of K. In 1956, Iwasawa introduced the
idea of studying the behaviour of A(F ) as F varies over all intermediate fields
in a Zp-extension K∞/K. Greenberg [G2] gives a comprehensive account of the
subsequent development of Iwasawa theory; we recall here some of the basic ideas.
The inverse limit A = lim←−F A(F ) is a finitely generated torsion module over the
Iwasawa algebra Λ = Zp[[Gal(K∞/K)]] = lim←−F Zp[Gal(F/K)]. This algebra has
a particularly simple structure: given a topological generator γ of Γ, there is an
isomorphism Λ ' Zp[[T ]] taking 1+γ to T . Iwasawa showed that there is a pseudo-
isomorphism (a map with finite kernel and cokernel) from A to an elementary
module E =

∑
i Λ/(fi); the power series f =

∏
i fi is the characteristic power

series of A. In [G1], Greenberg conjectured that f = 1 when K is totally real.
It is natural to consider the generalization of these ideas to a compositum of Zp-

extensions of K, that is, an extension K∞/K whose galois group Γ = Gal(K∞/K)
is isomorphic to Zr

p for some positive integer r. The corresponding Iwasawa algebra,
Λ = lim←−F Zp[Gal(F/K)], is isomorphic to a power series ring in r variables over Zp.
If K is totally real and satisfies Leopoldt’s conjecture, then the only Zp-extension is
the cyclotomic one and Greenberg’s conjecture that f = 1 in this case is equivalent
to the statement that A is finite, and hence has annihilator of height 2. More
generally, Greenberg has made the following conjecture [G2].
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Foundation grant DMS-9624219.
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Conjecture (Greenberg). Let K∞/K be the compositum of all Zp-extensions
of K. Then the annilator of A has height at least two.

A module whose annihilator has height at least 2 is said to be pseudo-null. Let
E = O×K and U =

∏
p|pO

×
Kp

, and denote by E the closure of E in U . The following
theorem is a consequence of the main theorem of this paper, Theorem 26.

Theorem 1. Let K = Q(e2πi/p). Suppose that

(1) A(K) ' Z/pZ
(2) (U/E)[p∞] ' Z/pZ.

Then K satisfies Greenberg’s conjecture.

We note that Greenberg’s conjecture is trivially true for regular primes, since in
that case A = 0. Condition (1) of the theorem implies that p satisfies Vandiver’s
conjecture, by the reflection principle. The conditions of the theorem are satisfied
often (heuristically, by about 3/4 of irregular primes), for example by 37, 59, 67,
101, 103, 131, and 149. More specifically, the conditions are equivalent to the
following:

(1) p satisfies Vandiver’s conjecture, and divides exactly one of the Bernoulli
numbers B2, B4, . . . , Bp−1

(2) if we write the characteristic series of A for the cyclotomic Zp-extension in
the form f = (T − cp)u, where u is a unit power series and γ is chosen to
satisfy ζγ = ζ1+p for all p-power roots of unity ζ, then c 6≡ 1 (mod p).

(See [W] Theorem 10.16 and Theorem 8.25.) The computations in [BCEMS] verify
Vandiver’s conjecture for all primes less than 12,000,000, and condition (1) is sat-
isfied by about 30% of those primes (about 61% of them are regular, in which case
A = 0). Iwasawa and Sims [IS] tabulate the congruence classes mod p of the p-adic
integer c for 1 < p < 400 and 3600 < p ≤ 4001. Condition (2) is satisfied for all
primes in their tables that satisfy condition (1).

Greenberg’s conjecture may be regarded as a statement about the structure of
Galois groups. We call an extension of number fields p-ramified if it is unramified
outside all the primes above p, and p-split if all the primes above p split completely.
Let

M∞ = maximal abelian p-ramified pro-p-extension of K∞

L∞ = maximal abelian unramified pro-p-extension of K∞

L′∞ = maximal p-split subextension of L∞/K∞

Then the three galois groups

(1) Y = Gal(M∞/K∞), X = Gal(L∞/K∞) and X ′ = Gal(L′∞/K∞)
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may be regarded as Λ-modules via the conjugation action of Γ. From class field
theory we have a canonical isomorphism of Λ-modules A ' X. Thus Greenberg’s
conjecture asserts that X is pseudo-null. This turns to be equivalent to the state-
ment that Y is Λ-torsion-free (see Theorem 3 and Corollary 14), and it is this latter
formulation that we prove. The equivalence was communicated to the author by
Greenberg, and has been proved independently by Lannuzel and Nguyen Quang
Do in [LN].

Greenberg’s conjecture has a connection with the structure of G = Gal(Ω/K),
where Ω is the maximal p-ramified pro-p extension of K. This connection has been
studied by Lannuzel and Nguyen Quang Do in [LN]. It is well-known that G is the
quotient of a free pro-p-group on g generators by s relations, where

g = dimZ/pZ H1(G, Z/pZ)

s = dimZ/pZ H2(G, Z/pZ),

and that g and s are minimal in this regard. Thus G cannot have a free pro-p
quotient of rank greater than g − s. On the other hand, G is free of rank g − s if
s = 0, that is, in the case K = Q(ζp), if p is regular.

Theorem 2. Suppose that Q(ζp) satisfies Greenberg’s conjecture. Then G has a
pro-p-free quotient of rank g − s if and only if p is regular.

This is proved in Section 3. Lannuzel and Nguyen Quang Do prove a similar
result for a general ground field K, but under the more restrictive hypothesis that
all finite abelian p-ramified extensions of K satisfy Leopoldt’s conjecture ([LN],
Theorem 5.4.)

In proving that Y is torsion-free, we will make use of the following generalization
of a theorem of Iwasawa on units [Iw]. Let

N∞ = K∞(ε1/pn

: n ∈ N, ε ∈ OK∞ [1/p]×).

Theorem 3. Suppose that K∞/K is a multiple Zp-extension satisfying:

(1) K∞ contains all the pn-th roots of unity, n > 0
(2) there is only one prime of K above p.

Then the Λ-module Y ′ = Gal(N∞/K∞) is torsion-free. In particular, Ytor fixes
N∞.
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1. Ext Groups and Local Cohomology.
In this section we collect together various results from the literature (see, for

example, [B-H] and [H]). Let N = r +1, the dimension of Λ. Let m be the maximal
ideal of Λ. Let x = x1, . . . , xN be a finite sequence in Λ that generates an m-primary
ideal. The Koszul complex

0 d−→ KN (x) d−→ KN−1(x) d−→ · · · d−→ K1(x) d−→ K0(x)→ 0

is defined as follows. Let ΛN be the free Λ-module with basis {ei : 1 ≤ i ≤ N}.
Then

Ki(x) =
i∧

ΛN

and

d(ej1 ∧ · · · ∧ eji) =
i∑

s=1

(−1)s−1xjsej1 ∧ · · · ∧ êjs ∧ · · · ∧ eji ,

where the hat indicates that a term is omitted. If x is a regular sequence, then the
Koszul complex is a free resolution of Λ/(x) ([Ma], Theorem 43).

Given a finitely generated Λ-module X, we define a complex K∗(x, X) by

K∗(x, X) = HomΛ(K∗(x), X)

and define H∗(x, X) to be the cohomology of this complex.
Now let (xn) be a sequence of sequences

xn = (xn,1, . . . , xn,N ),

such that xn,i | xm,i, n ≤ m, 1 ≤ i ≤ N . If n ≤ m, there is a natural map of
complexes

K.(xn)→ K.(xm),

which multiplies ej1 ∧ · · · ∧ eji
by(
xm,j1

xn,j1

)
· · ·

(
xm,ji

xn,ji

)
.

Denote by I(x) the ideal of Λ generated by the components of x. Suppose that
for each k ∈ N there are i, j ∈ N such that I(xi) ⊂ mk and mj ⊂ I(xk). Then, for
a finitely generated Λ-module X,

lim−→
n

Hi(xn, X)

is the local cohomology group Hi
m(X) defined by Grothendieck. This is shown in

Sect. 3.5 of [B-H] for the case where x = x1, . . . , xN is a sequence in Λ that generates
an m-primary ideal and xn,i = xn

i . The construction there generalizes easily to our
situation.
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Theorem 4 (Grothendieck Duality for Λ). Suppose that for each positive
integer n we have a sequence xn = (xn,1, . . . , xn,N ) generating an m-primary ideal,
such that xn,i | xm,i, n ≤ m, 1 ≤ i ≤ N , and such that for each k ∈ N there are
i, j ∈ N such that I(xi) ⊂ mk and mj ⊂ I(xk). Then there is an isomorphism of
functors of finitely generated Λ-modules

ExtN−i
Λ (·,Λ) ' HomZp

(lim−→
n

Hi(xn, ·), Q/Z).

Proof: This is the version of Grothendieck’s local duality theorem suggested by
Exercise 3.5.14 of [B-H]. The local duality theorem is [B-H], Theorem 3.5.8. We
note that Λ is a regular local ring, so it is a fortiori a Cohen-Macaulay local ring,
and therefore satisfies the hypotheses of the results in [B-H] cited here.

Now let I ⊂ Λ be the augmentation ideal, let g1, . . . , gr be a set of topological
generators for Γ, and let (T1, . . . , Tr) be the corresponding set of generators for I
(gi = 1 + Ti). Let

ωn(Ti) = (1 + Ti)pn

− 1, νn(Ti) =
ωn(Ti)

Ti
n ≥ 0.

There are two particularly useful choices of sequence in applying Theorem 4:

xn = (pn, ωn(T1), . . . , ωn(Tr)) and xn = (pn, νn(T1), . . . , νn(Tr)).

Let
x′n = (ωn(T1), . . . , ωn(Tr)) (respectively (νn(T1), . . . , νn(Tr))).

One easily deduces from the definitions an exact sequence

(2) 0→ Hi−1(x′n, X)/pn → Hi(xn, X)→ Hi(x′n, X)[pn]→ 0.

In the case i = r, the map on the right is induced by (y0, . . . , yr) 7→ y0. Note that,
in the case xn = (pn, ωn(T1), . . . , ωn(Tr)), Hr(x′n, X) = X/(ωn(T1), . . . , ωn(Tr)).
Define a functor

E(X) = HomZp(lim−→Hr(x′n, X), Qp/Zp).

In the case where r = 1 and Xn is torsion, E(X) is Iwasawa’s original definition of
the adjoint module of X. The following proposition is proved in [Mc] (Proposition
2).

Proposition 5. There is a functorial injective map E(X) → Ext1Λ(X, Λ). This
map is an isomorphism if Hr(x′n, X) is finite for all sufficiently large n.

We conclude with two lemmas on pseudo-null modules which will be needed later.
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Lemma 6. Let X be a finitely generated Λ-module. Then X is pseudo-null if and
only if X is torsion and Ext1Λ(X, Λ) = 0.

Proof: This is also proved in [H], Theorem 11. Since Λ has dimension r+1, it follows
from Theorem 4 that X is torsion and Ext1Λ(X, Λ) = 0 if and only if Hr+1

m (X) =
Hr

m(X) = 0, where m ⊂ Λ is the maximal ideal and H∗
m(·) is the local cohomology.

By [B-H] Theorem 3.5.7, these two local cohomology groups vanish if and only if
the dimension of X as a Λ-module is less than or equal to r − 1. Since R is a
regular local ring, the dimension of X is r + 1 minus the height of its annihilator
([B-H], Corollary 2.1.4), hence the dimension of X is less than or equal to r − 1 if
and only if the height of the annihilator of X is at least 2, that is, if and only if X
is pseudo-null.

Lemma 7. Let X be a finitely-generated torsion Λ-module. Then X is pseudo-
isomorphic to Ext1(X). Further, Ext1(X) is pseudo-null if and only if it is zero.

Proof: There is a pseudo-isomorphism X → E, where E is an elementary module,
that is, a product of modules of the form Λ/(f), f ∈ Λ. Taking Ext∗(·) of the
sequence

0→ Λ
f−→ Λ→ Λ/(f)→ 0,

we see that Ext1(Λ/(f)) = Λ/(f) if f 6= 0. Hence, for any elementary torsion-
module E, Ext1(E) ' E. Now, a pseudo-isomorphism

X → E

leads to a map
Ext1(E)→ Ext1(X),

which is a pseudo-isomorphism, since Exti of a pseudo-null module is pseudo-null
for any i (the annihilator of X also annihilates its Ext groups). Thus Ext1(X, Λ)
is pseudo-isomorphic to X. The second statement of the lemma now follows imme-
diately from Lemma 6.

2. The Direct Limit of the Ideal Class Group.
Let X ′ be as in (1). For a positive integer n, let Kn be the fixed field of pnΓ.

Let X ′
n = X ′

Kn
. Define ideals ωn and νn,m in Λ by

ωn = (ωn(T1), . . . , ωn(Tr))

νn,m = (νn,m(T1), . . . , νn,m(Tr)), νn,m(T ) =
ωn(T )
ωm(T )

.

From (2) we get a surjective map

Hr(xn, X ′) � X ′/ωnX ′[pn]
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and, composing this with the natural map

(3) X ′/ωnX ′ → X ′
n,

we get a map
Hr(xn, X ′)→ X ′

n[pn].

Theorem 8. Suppose that K has only one prime above p. Then the natural map

Hr(xn, X ′)→ X ′
n[pn]

induces an isomorphism

lim−→
n

Hr(xn, X ′) ' lim−→X ′
n[pn] = lim−→X ′

n.

In particular, Ext1(X ′) is the Pontryagin dual of lim−→X ′
n.

Proof: Since there is only one prime of K above p, its decomposition group in Γ
has finite index. Choose n0 large enough so that all the primes above p are totally
ramified in K∞/Kn0 . Then (3) is surjective, hence the direct limit of Hr(xn, X ′)→
X ′

n[pn] surjective also. Thus it suffices to show that the direct limit is injective.
Choose a fixed prime p of L′ above p. Since L′/K∞ is p-split, the decomposition

group of p in Gal(L′/Kn) is isomorphic to ΓKn = pnΓ; in particular, it is abelian.
Denote this decomposition group by Γ̃p,n.

Suppose that n ≥ n0. We claim that the kernel of X ′/ωnX ′ → X ′
n is contained

in νn,n0X
′/ωnX ′. First, since Gal(L′/Kn) = Γ̃p,nX ′ and Γ̃p,n is abelian, the com-

mutator subgroup of Gal(L′/Kn) is ωnX ′. Thus X ′/ωnX ′ is the maximal abelian
quotient of Gal(L′/Kn), and hence the kernel of X ′/ωnX ′ → X ′

n is generated by
the decomposition groups above p. Since there is only one prime of K above p, all
the decomposition groups are conjugate under the action of Γ. Thus, the subgroup
of X ′ generated by the decomposition groups is generated by commutators [γ, g′],
where γ ∈ Γ̃p,n and g′ ∈ Gal(L′/K). Furthermore, we can restrict γ to a set of
generators of Γ̃p,n. Now, as noted above, the image of Γ̃p,n in Γ is pnΓ. So we may
assume that the image of γ in Γ is gpn

i for some i. Choose g so that

gpn0 = γ0x γpn−n0

0 = γ

for some γ0 ∈ Γ̃p,n0 and some x ∈ X ′. Let T (resp. T ′) be the image of 1− g (resp.
1− g′) in Λ. Then, using the commutator identity

[aN , b] = [a, b]a
N−1

[a, b]a
N−2

. . . [a, b],
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we find

νn0(T )[g, g′] = [gpn0
, g′] = [γ0x, g′] = [γ0, g

′] + [x, g′] = [γ0, g
′] + T ′x.

Thus

νn(T )[g, g′] = νn,n0(T )([γ0, g
′] + T ′x) =

[γpn−n0

0 , g′] + νn,n0(T )T ′x = [γ, g′] + νn,n0(T )T ′x.

Hence, since [g, g′] ∈ X ′ and νn,n0 divides νn, [γ, g′] ∈ νn,n0(T )X ′. This proves the
claim.

We apply the results of Section 1 using

xn = (pn, ωn(T1), . . . , ωn(Tr)).

and
yn = (pn, νn,n0(T1), . . . , νn,n0(Tr)).

The fact that the kernel of X ′/ωnX ′ → X ′
n is contained in νn,n0X

′/ωnX ′ implies
that Hr(y′n, X) is a quotient of X ′

n. Hence it is finite, so by Proposition 5,

lim−→Hr(y′n, X ′) ' D = Hom(Ext1(X ′), Qp/Zp).

On the other hand, it follows from Theorem 4 that

D ' lim−→
n

Hr(xn, X ′).

Hence
lim−→
n

Hr(xn, X ′) ' lim−→
n

Hr(y′n, X ′).

Since Hr(xn, X ′) → Hr(y′n, X ′) factors through the X ′
n → Hr(y′n, X ′), this im-

plies that lim−→n Hr(xn, X ′)→ lim−→n X ′
n is injective. This concludes the proof of the

theorem.

3. Interpretation of Greenberg’s Conjecture in Terms of Y .

For each prime p of K lying above p, let rp be the integer such that the decom-
position group Γp of p in Γ is isomorphic to Zrp

p . Let Y and X ′ be as in (1). For
any Λ-module M and i ∈ Z we denote by M(i) the i-th Tate twist of M .

Theorem 9. Suppose that K∞ contains the pn-th roots of unity for every positive
integer n, and that rp ≥ 2 for all primes p of K lying above p. Then Ext1Λ(X ′,Λ)(1)
is pseudo-isomorphic to Ytor, and is isomorphic to Ytor if rp ≥ 3 for all p.
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In order to prove Theorem 9, we relate Ext1(Y, Λ) to X ′ using a duality theorem of
Jannsen [J2]. Then we use a basic structure theorem for Y to turn this around into a
relation between Ytor and Ext1(X ′,Λ). The structure theorem, due independently
to Jannsen [J1] and Nguyen-Quang-Do [Ng], may be formulated conveniently in
terms of an auxiliary Iwasawa-module Z, defined by Nguyen-Quang-Do [Ng].

Theorem 10 ([J1], [Ng]). Suppose that K∞ contains the pn-th roots of unity for
every positive integer n. There is a Λ-module Z with a presentation

(4) 0→ Λs → Λg → Z → 0,

for some non-negative integers s and g, such that Y fits in a short exact sequence

0→ Y → Z → I → 0,

where I ⊂ Λ is the augmentation ideal.

We define Z as follows. Let Ω be the maximal p-ramified pro-p-extension of K,
G = Gal(Ω/K), and I the augmentation ideal in Zp[[G]]. Define

ZF = H0(Ω/F, I), Z = ZK∞ .

If K ⊂ F ⊂ K∞, the identification

H0(Gal(K∞/F ), Z) = ZF

gives a natural surjective map
Z � ZF .

Let YF be the Galois group of the maximal abelian p-ramified pro-p extension of
F . Denote by IF the augmentation ideal in Z[Gal(F/K)]. By taking Gal(Ω/F )
homology of the exact sequence

0→ I → Zp[[G]]→ Zp → 0,

one obtains an exact sequence

(5) 0→ YF → ZF → IF → 0,

functorial in F .
In particular, with F = K∞, we obtain the second sequence in the statement of

the theorem. The integers g and s in the theorem are

g = dimZ/pZ H1(G, Z/pZ)

s = dimZ/pZ H2(G, Z/pZ)

As explained in [Ng], (4) may be derived from the presentation of G as a pro-p
group with g generators and s relations. (Injectivity on the left in (4) depends on
the assumption that K∞ contains all p-power roots of unity, which implies that K∞
satisfies the weak Leopoldt conjecture, H2(K∞, Qp/Zp) = 0; see [Ng] for details.)

The presentation (4) allows us to compute Exti(Y ) = Exti
Λ(Y,Λ) for i ≥ 2.

Although it is not needed in what follows, the answer is simple so we present it
here.
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Proposition 11. Let r = rankZp
Γ. If i ≥ 2, then

Exti(Y ) =
{

0 i 6= r − 2
Zp i = r − 2.

Proof: Since Z has a free resolution of length 2, Exti(Z) = 0 if i ≥ 2. Thus, taking
Ext of (5) with F = K∞, we see that Exti(Y ) ' Exti+1(I) if i ≥ 2. Now use the
following lemma.

Lemma 12. If i ≥ 1, then

Exti(I) =
{

0 i 6= r − 1
Zp i = r − 1.

Proof: Taking Ext of
0→ I → Λ→ Zp → 0,

we see that Exti(I) ' Exti+1(Zp) if i ≥ 1. But, using the Koszul resolution of Zp,
one can see that this latter group is zero unless i+1 = r, in which case it is Zp.

The structure of Exti(Y ) when i = 1 is more subtle. A duality theorem between
X ′ and Y , due to Jannsen, relates it to the Iwasawa module

H2
∞ = lim←−

F

H2(O′F , Zp(1)),

which is related to X ′ by the exact sequence

(6) 0→ X ′ → H2
∞ →

∑
p|p

Zp[[Γ/Γp]]→ Zp → 0,

where the sum is over all primes of K dividing p. We denote by X(n) the usual
Tate twist of a Λ-module X by Zp(1)⊗n, where Zp(1) = lim←−µpn .

Theorem 13 ([J2], Theorem 5.4d). If r 6= 2, 3, there is an isomorphism

H2
∞ ' Ext1(Y,Λ)(1).

If r = 2 there is an exact sequence

Zp(1)→ H2
∞ → Ext1(Y, Λ)(1)→ 0,

and if r = 3, there is an exact sequence

0→ H2
∞ → Ext1(Y,Λ)(1)→ Zp(1).
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Proof of Theorem 9 : Let p be a prime of K lying above p. The annihilator of
Λp = Zp[[Γ/Γp]] as a Λ-module is the augmentation ideal in Zp[[Γp]], which has
height rp. Thus, the hypothesis on rp implies that Λp is pseudo-null, and hence
has vanishing Ext1 by Lemma 6. Furthermore, if rp ≥ 3 then its Ext2 vanishes
as well—the argument for this is entirely similar to that in the proof of Lemma 6.
There is a natural surjection X → X ′, whose kernel is generated as a Zp-module
by the Frobenius automorphisms corresponding to primes above p, and is therefore
a finitely generated module over

⊕
p Λp. Hence the kernel is pseudo-null, and so

Ext1(X) is isomorphic to Ext1(X ′).
From (6) we get an injection X ′ ↪→ H2

∞ whose cokernel is pseudo-null, and
has vanishing Ext2 if rp ≥ 3 for all p. Thus Ext1(X ′) is pseudo-isomorphic to
Ext1(H2

∞), and is isomorphic if rp ≥ 3 for all p.
Since Zp(1) has vanishing Ext1 when r ≥ 2 and vanishing Ext2 when r ≥ 3, The-

orem 13 implies that Ext1(H2
∞)(1) is isomorphic to Ext1(Ext1(Y )). It follows from

(5) and Lemma 12 that there is a pseudo-isomorphism Ext1(Z) → Ext1(Y ). Fur-
thermore, this is an injection with cokernel Zp if r = 3, and an isomorphism if r > 3.
Hence from Lemma 7 that Ext1(Ext1(Y )) is pseudo-isomorphic to Ext1(Ext1(Z)),
isomorphic if r ≥ 3. An elementary calculation with the two-step free resolution of
Z shows that

Ext1(Ext1(Z)) ' Ztor.

Finally, it follows from (4) that Ztor ' Ytor.

Corollary 14. Suppose that K∞ contains the pn-th roots of unity for every
positive integer n, and that rp ≥ 2 for all primes p of K lying above p. Then
Greenberg’s conjecture is satisfied if and only if Ytor = 0.

Proof: Theorem 9 and Lemma 7 imply the corollary directly in the case rp ≥ 3. In
the case rp = 2 they imply that Greenberg’s conjecture is equivalent to the pseudo-
nullity of Ytor. However, since K∞ contains µp∞ , it verifies the weak Leopoldt
conjecture, hence Y has no non-trivial pseudo-null submodule (see [Ng]), so Ytor is
pseudo-null if and only if it is zero.

This result has also been shown in [LN]. We conclude this section by proving
Theorem 2, which we restate here for convenience.

Theorem 2. Suppose that Q(ζp) satisfies Greenberg’s conjecture. Then G has a
pro-p-free quotient of rank g − s if and only if p is regular.

Proof: Suppose that there is a surjective map G → F , where F is a free group of
rank g − s. Then, from the definition of Z, we see that there is a surjective map
Z → Λg−s. On the other hand, Z has rank g − s, so we must have

Z ' Λg−s ⊕ Ztor.
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By Corollary 14, Ytor = 0, so Z is free. Since Z/IZ ' ZK ' YK ' Gab, this
implies that the maximal abelian p-ramified p-extension of K has Galois group
isomorphic to Zg−s

p ; in particular, there is no torsion in the Galois group. It follows
from the theory of cyclotomic fields that p is regular (see, for example, the proof of
Lemma 25).

4. A Generalization of Iwasawa’s Theorem on Units.

In this section we prove Theorem 3, whose statement we recall here. Recall

N∞ = K∞(ε1/pn

: n ∈ N, ε ∈ OK∞ [1/p]×).

Theorem 3. Suppose that K∞/K is a multiple Zp-extension satisfying:

(1) K∞ contains all the pn-th roots of unity, n > 0
(2) there is only one prime of K above p.

Then the Λ-module Y ′ = Gal(N∞/K∞) is torsion-free. In particular, Ytor fixes
N∞.

For a finite extension F/K contained in K∞, let EF = OF [1/p]×, and let Eu
F ⊂

EF be the group of universal norms, that is, the elements of EF that are norms
of elements of EL for every extension L/F contained in K∞/F . Let E = lim−→F EF ,
and consider the subgroup Eu = lim−→F Eu

F ⊂ E . Define Nu
∞ to be the extension of

K∞ obtained by adjoining all p-power roots of all elements of Eu, and let Y u =
Gal(Nu

∞/K∞).

Lemma 15. Suppose that K∞ contains all p-power roots of unity. Then Y u is
Λ-torsion free.

Proof: From Kummer theory, we have an isomorphism of Λ-modules

Y u ' HomZp
(Eu ⊗Qp/Zp, Qp/Zp(1)).

Let E = lim←−F Eu
F = lim←−F EF , regarded as a Λ-module. We define a homomorphism

(7) HomZp
(Eu ⊗Qp/Zp, Qp/Zp(1))→ HomΛ(E,Λ(1))

by mapping χ to the homomorphism

(uF ) 7→ (
∑

σ∈Gal(F/K)

q(F )∗χ(uσ
F ⊗ q(F )−1)σ),

where q(F ) is the number p-power roots of unity in F , and

q(F )∗ : q(F )−1Z/Z→ Z/q(F )Z

12



is induced by multiplication by q(F ). Since every universal norm u ∈ Eu
F occurs as

part of a norm compatible sequence, χ is in the kernel of this map if and only if χ =
0, hence (7) is injective. The lemma now follows from the fact that HomΛ(E,Λ(1))
is torsion-free, since Λ(1) is free of rank 1.

It follows from the lemma that the torsion submodule of Y ′ is contained in
the kernel of Y ′ → Y u, which, by Kummer theory, is the Pontriagin dual of
lim−→F (EF /Eu

F ) ⊗ Qp/Zp. We prove Theorem 3 by showing that the direct limit
is zero. We define a filtration Eu

F ⊂ En
F ⊂ Eloc

F ⊂ EF by

En
F = {x ∈ EF : x ∈ NL/F L× for all finite L/F in K∞}

Eloc
F = {x ∈ EF : xv ∈ NLv/Fv

L×v , all finite L/F in K∞, all valuations v of L}

We show lim−→F (EF /Eu
F )⊗ (Qp/Zp) = 0 by considering each graded piece in turn.

We make use of the following lemmas, whose proofs are elementary and left to the
reader:

Lemma 16. Suppose that (Mj), j ∈ J , is a direct system of Zp-modules, and that
for every positive integer n and every j there exists j′ ≥ j such that the image of

Mj →Mj′

is contained in pnMj′ . Then

lim−→
j

Mj ⊗Qp/Zp = 0.

For abelian groups H ⊂ Γ of finite index, define

e(Γ,H) =
index of H in Γ

(exponent of Γ/H)
.

Lemma 17. If Γ ' Zr
p with r > 1, then

lim
H

e(Γ,H) = p∞,

where the limit is over open neighborhoods H of the identity.

Units modulo local norms. Let ΓF = Gal(K∞/F ), and, for a prime p of F ,
denote by ΓF,p the decomposition group of p in ΓF (where the context removes
ambiguity, we denote ΓF,p simply by Γp).

13



Proposition 18. Suppose that r ≥ 2 and that there is only one prime of K lying
above p. Then

lim−→((EF /Eloc
F )⊗Qp/Zp) = 0.

Proof: Recall that YF and X ′
F are the Galois groups respectively of the maximal

abelian p-ramified pro-p-extension of F , and the maximal abelian unramified pro-
p-extension in which all primes above p split completely. By class field theory we
have an exact sequence

EF ⊗ Zp →
∏
p|p

Gal(F
ab

p /Fp)→ YF → X ′
F → 0,

where the map on the left is the product of the local reciprocity maps over all
primes of F above p. Let Hp be the kernel of Gal(F

ab

p /Fp)→ ΓF,p. The reciprocity
map takes an element to Hp if and only if it is a local universal norm at p. Let
HF ⊂ YF be the image of

∏
p Hp and let WF = YF /HF . Then we get an exact

sequence
0→ EF /Eloc

F ⊗ Zp →
∏
p

ΓF,p →WF → X ′
F → 0.

Thus it suffices to show that

lim−→
F

∏
p

ΓF,p ⊗Qp/Zp = 0

and
lim−→
F

WF,tor ↪→ lim−→
F

X ′
F .

The first follows easily from Lemmas 17 and 16, since, for an extension F ′/F
contained in K∞, the transition map ΓF,p → ΓF ′,p is the transfer, which is multi-
plication by the index [ΓF,p : ΓF ′,p]. Hence its image lies in e(ΓF,p,ΓF ′,p)ΓF ′,p.

To prove the second, note that lim←−ΓF,p = 0, hence

lim←−
F

WF = X ′ = Gal(L′/K∞),

where L′ and X ′ are as in (1). Let Kn be as in Section 2, and let Γ̃p,n be a
decomposition group of p in Gal(L′/Kn). Choose n large enough so that all the
primes above p are totally ramified in K∞/Kn. Then, as pointed out in the proof
of Theorem 8, the commutator subgroup of Gal(L′/Kn) is ωnX ′. Hence we have
an exact sequence

0→ X ′/ωnX ′ →WKn
→ ΓKn

.

Since ΓKn is torsion-free, WKn,tor ⊂ X ′/ωnX ′.
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Thus it suffices to show that

lim−→
n

(X ′/ωnX ′)tor ↪→ lim−→
n

X ′
n,

or, equivalently, that

lim−→
n

(X ′/ωnX ′)[pn] ↪→ lim−→
n

X ′
n[pn].

Since the map
(X ′/ωnX ′)[pn]→ X ′

n[pn]

is a factor of
Hr(xn, X ′) � (X ′/ωnX ′)[pn]→ X ′

n[pn],

this follows from Theorem 8.

Local norms modulo global norms.
For a Zp-module M , let M∧ denote HomZp

(M, Qp/Zp).

Lemma 19. Suppose that no prime splits completely in K∞/K. Let F/K be a
finite subextension of K∞/K. There is a surjective map of Gal(F/K)-modules

H2(ΓF , Qp/Zp)∧ �
Eloc

F

En
F

.

Proof: Let IF be the idèle group of F and let CF = IF /F× be the idèle class group.
It follows from the hypothesis, and the fact that K∞/K is unramified outside p,
that any element of F× that is a universal local norm must be a p-unit, and so
Eloc

F /En
F is the kernel of

lim←−
L

Ĥ0(L/F, L×)→ lim←−
L

Ĥ0(L/F, IL),

where the limit is taken over all finite extension L/F in K∞. Taking Gal(L/F )-
cohomology of the exact sequence

0→ L× → IL → CL → 0

yields an exact sequence

Ĥ−1(L/F,CL)→ Ĥ0(L/F, L×)→ Ĥ0(L/F, IL).

By class field theory,

Ĥ−1(L/F,CL) = Ĥ−3(L/F, Z) = H2(L/F, Q/Z)∧ = H2(L/F, Qp/Zp)∧.

Thus Eloc
F /En

F is a quotient of

lim←−
L

H2(L/F, Qp/Zp)∧ = (lim−→H2(L/F, Qp/Zp))∧ = H2(ΓF , Qp/Zp)∧.
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Lemma 20. Let Γ be an abelian group isomorphic to Zr
p and let Γ′ be a subgroup

of Γ of finite index. Then the image of H2(Γ, Qp/Zp)∧ → H2(Γ′, Qp/Zp)∧ (dual to
the corestriction map) is contained in e(Γ,Γ′)H2(Γ′, Qp, Zp)∧.

Proof: Dually, we prove that the corestriction map

H2(Γ′, Qp/Zp)→ H2(Γ, Qp/Zp)

vanishes on H2(Γ′, Qp/Zp)[e(Γ,Γ′)]. It is shown in [Br] that H2(Γ′, Qp/Zp) is gen-
erated by cup products of characters χ′1, χ

′
2 ∈ H1(Γ′, Qp/Zp). Furthermore, if

e(Γ,Γ′) kills χ′1 ∪ χ′2, then it kills one of the characters, say χ′2. The corestriction
map on characters is composition with the transfer map Γ → Γ′, which is just
multiplication by [Γ : Γ′] in this case. If we write χ′i = res χi for some characters χi

of Γ, i = 1, 2, and let pe = ord(χ2)/ ord(χ′2), then pe divides the exponent of Γ/Γ′,
and

cores(χ′1 ∪ χ′2) = (χ1 ∪ cores χ′2) = [Γ : Γ′](χ1 ∪ χ2).

Now, since e2(Γ,Γ′) kills χ′2, pee2(Γ,Γ′) kills χ2. But pe divides the exponent of
Γ/Γ′, and hence pee2(Γ,Γ′) divides [Γ : Γ′], hence [Γ : Γ′] kills χ2. Thus the right
hand side of the displayed equation is zero, as required.

Proposition 21. Suppose that K∞ contains all p-power roots of unity and that
r ≥ 2. Then the direct system (Eloc

F /En
F )⊗Zp satisfies the conditions of Lemma 16,

and hence lim−→(Eloc
F /En

F )⊗Qp/Zp = 0.

Proof: This follows from Lemma 19 and Lemma 20.
Global norms modulo norms of units.

Lemma 22. Let F/K be a finite extension contained in K∞. There is a surjective
map of Gal(F/K)-modules

H1(ΓF , X ′) �
En

F

Eu
F

.

Proof: Let IF be the group of ideals in OF [1/p], PF the group of principal ideals,
and C ′

F = IF /PF . For a finite extension L/F in K∞, consider the exact sequences

0→ EL → L× → PL → 0

and
0→ PL → IL → C ′

L → 0.

Since IL is a direct sum of induced Gal(L/F )-modules, it is cohomologically trivial.
Hence cohomology of the second sequence yields

H1(L/F, C ′
L) = Ĥ−2(L/F, C ′

L) ' Ĥ−1(L/F, PL).
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Cohomology of the first sequence gives

Ĥ−1(L/F, PL)→ Ĥ0(L/F, EL)→ Ĥ0(L/F, L×).

Splicing these together we get

H1(L/F, C ′
L)→

EF ∩NL/F L×

NL/F EL
→ 0.

Taking the inverse limit over L, and noting that, since L/F is a p-extension,
H1(L/F, C ′

L) ' H1(L/F, A′
L), we obtain the required map.

Remark. If Kn is as in Section 2, then

H1(ΓKn
, X ′) = Hr−1(x′n, X ′),

where x′n = (ωn(T1), . . . , ωn(Tr)).

Proposition 23. Suppose K has exactly one prime above p. Then lim−→(En
F /Eu

F )⊗
Qp/Zp = 0.

Proof: From Lemma 22 and the remark above it suffices to prove that

lim−→
n

Hr−1(x′n, X ′)⊗Qp/Zp = 0.

The exact sequence (2) with i = r yields

0→ Hr−1(x′n, X ′)/pn → Hr(xn, X ′)→ (X ′/ωnX ′)[pn]→ 0.

Theorem 8 implies the direct limit of the right hand arrow is an isomorphism; hence
the direct limit of the group on the left is zero.
Proof of Theorem 3 : The case r = 1 follows from [Iw, Theorem 15]. Hence we
may assume r ≥ 2. Recall from the discussion at the beginnning of this section
that Y u is torsion-free, and that the kernel of Y ′ → Y u is the Pontriagin dual of
lim−→F (EF /Eu

F )⊗Qp/Zp. It follows from Propositions 18, 21, and 23 that this direct
limit is zero, and hence the theorem follows.

5. A Criterion for the Vanishing of Ytor.
We recall the notation of Section 3, in particular

g = dimZ/pZ H1(G, Z/pZ)

s = dimZ/pZ H2(G, Z/pZ)

Note that if s = 0, then, by (4), Z is a free Λ-module, hence Ytor = 0. Our aim
is to develop a test in the next simplest case. Let Kab be the maximal abelian
p-ramified pro-p-extension of K.
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Lemma 24. Suppose that K satisfies Leopoldt’s conjecture and that s = 1. If Ytor
fixes Kab, then Ytor = 0.

Proof: Since s = 1, the resolution of Z looks like

(8) 0→ Λ→ Λg → Z → 0.

Let λ = (λ1, . . . , λg) be the image of 1 under the left hand map in this resolution.
Choose an element y ∈ Ytor such that if y = fy′, f ∈ Λ, f, y′ 6= 0, then f is a unit
in Λ. Let (µ1, . . . , µg) ∈ Λg map to y. Then the µi are relatively prime, and there
exist f, h ∈ Λ, f 6= 0, such that

f · (µ1, . . . , µg) = h · (λ1, . . . , λg).

Since Λ is a unique factorization domain and the µi are relatively prime, h divides
f ; replacing f by f/h we get

(9) f · (µ1, . . . , µg) = (λ1, . . . , λg).

(This last step depended on the assumption s = 1 in a crucial way.) Now take
H0(Γ, ·) of the sequence (8), noting that from (5) we have H0(Γ, Z) = ZK = YK =
Gal(Kab/K):

0 −→ Zp
i−→ Zg

p −→ Gal(Kab/K) −→ 0

The fact that i is injective is a consequence of Leopoldt’s conjecture. Indeed, as
explained in [Ng], the kernel, H1(K∞/K, Z), is isomorphic to the Pontriagin dual of
H2(K, Qp/Zp), and the vanishing of this latter cohomology group is an equivalent
formulation of Leopoldt’s conjecture. We have i(1) = λ(0); since i is injective,
λ(0) 6= 0. It follows that f(0) 6= 0. Since f(0)µ(0) = λ(0), the power of p dividing
f(0) is the order of the image of µ(0) in Gal(Kab/K). By hypothesis, that order is
1, hence f(0) is a unit. Hence f itself is a unit power series, and thus y = 0.

In view of Theorem 3, our first step in applying the criterion developed in
Lemma 24 is to restrict ourselves to a class of multiple Zp-extensions K∞/K for
which Kab ⊂ N∞. The following lemma gives one such class of extensions. Recall
that A is the p-primary part of the ideal class group of K, E = O×K , U =

∏
p|pO

×
Kp

,
and that E is the closure of E in U .

Lemma 25. Suppose that K = Q(ζp).

(1) Suppose that A(K) ' Z/pZ. Then s = 1.
(2) Suppose further that (U/E)[p∞] ' Z/pZ. Then Gab[p∞] ' Z/pZ.
(3) Suppose further that K∞ contains the pn-th roots of unity for all n > 0.

Then Kab ⊂ N∞.
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Proof: (1) We must show that H2(G, Z/pZ) ' Z/pZ. Since µp ⊂ K, we have
H2(G, Z/pZ) ' H2(G, µp). The latter may be calculated by regarding it as an étale
cohomology group over S = Spec(O[1/p]), and using the Kummer sequence of étale
sheaves on S

1→ µp → Gm → Gm → 1.

Let C be the ideal class group of K. Since the prime of K above p is principal,
we have C ' Pic(OK [1/p]) ' H1

ét(S, Gm). Furthermore, H2
ét(S, Gm) = 0, since it

is the Brauer group of S, and may be identified with the subgroup of the Brauer
group of K unramified outside p. Since there is only one prime above p and K is
totally complex, this subgroup is zero. Thus H1

ét(S, µp) ' C/pC ' A/pA.
(2) From class field theory we have an exact sequence

0→ U (1)/E(1) → Gab → A→ 0,

where U is the group of units in the completion of K at the prime above p, and E
is the closure of the global units in U , and the superscript 1 indicates that we take
units congruent to 1 modulo p. Let (α) = ap where a is an ideal of K representing
a generator a for A(K). Write α = α′u for some u ∈ µp−1(Kp), α′ ∈ U (1). If
a lifts to a ∈ Gab, then ap ∈ U (1)/E(1) is represented by α′. Since α 6= 1 and
µp−1(K) = {1}, α′ 6= 1. It follows that the image of αp in U (1)/E(1) is not a
torsion element. Indeed, a ∈ A(i) where i is odd and i 6= 1, hence E(1)(i) = 0.
Therefore, all the torsion in Gab is contained in U (1)/E(1).

(3) Let K̃ denote the compositum of all Zp-extensions of K. We will first show
that K̃ is contained in the field obtained by adjoining p-power roots of p-units to
K(µp∞) ⊂ K∞. Indeed, let

ω : Z×p → µp−1(Zp)

be the Teichmuller character (characterized by ω(a) ≡ a (mod p)). Let (ζn) be a
generator of Zp(1) = lim←−µpn , and let

ηk,n =
∏

a∈(Z/pnZ)×

(1− ζa
n)ωk(a)a−1

.

(Here a−1 denotes any integer congruent to a−1 modulo pn.) Then ηk,n is a
p-unit in Q(µpn). Further Gn = Gal(Q(µpn)/K) acts on the class of ηk,n in
Q(µpn)×/Q(µpn)×pn

via the cyclotomic character, and ∆ = Gal(K/Q) acts via
the character ω−k. Hence, by Kummer theory, the pn-th root of ηk,n generates
an extension Ln/Q(µpn) on which Gn acts trivially, and which is therefore abelian
over K. Thus Ln = K(µpn)Kn for some p-extension Kn/K such that ∆ acts on
Gal(Kn/K) via ωk+1. Furthermore, if m > n,

NQ(µpm )/Q(µpn )ηk,m = ηpm−n

k,n ,
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so Kn ⊂ Km, and the union of Kn, n > 1, forms an extension of K which is either
trivial or is a Zp-extension on which ∆ acts by ωk+1. In fact the extension is non-
trivial precisely when k = p−2 (the cyclotomic Zp-extension) or when 0 ≤ k ≤ p−1
and k is even. The compositum of all these extensions has galois group Z(p+1)/2

p ,
the maximal allowable rank by class field theory. Hence it is K̃, and is visibly
contained in N∞.

By definition, Gal(K̃/K) is the torsion-free quotient of Gab, so it follows from
(2) that Gal(Kab/K̃) ' Z/pZ. On the other hand, we can generate a p-ramified
extension of K̃ whose galois group is isomorphic to Z/pZ simply by taking the
extension K(α1/p), where α is as in (2). This extension is a non-trivial p-ramified
extension (it is not contained in K̃ because of eigenspace considerations) and is
abelian over K since α ∈ K. Thus Kab = K̃(α1/p). We claim that a capitulates in
K∞. This implies that α can be written as a p-th power times a unit in K∞, and
thus α1/p ∈ N∞. Since we have already seen that K̃ ⊂ N∞, this proves the lemma.

To prove the claim, we show that K∞ contains H, the p-Hilbert class field of
K. It follows from well-known results in the theory of cyclotomic fields that H is
generated by the pth-th root of a cyclotomic unit. (The reflection principle, [W],
Theorem 10.9, implies that p does not divide h+. The claim now follows from
Theorems 10.16, 8.2, and 8.25.) Since the p-th roots of all the cyclotomic units in
K are contained in K∞, this implies that H ⊂ K∞.

6. The Main Theorem.

Theorem 26. Let K∞/K be a multiple Zp-extension of K, Gal(K∞/K) ' Zr
p,

r ≥ 2. Suppose that K and K∞ satisfy the following conditions:

(1) K∞ contains all p-power roots of unity
(2) there is only one prime of K above p
(3) K satisfies Leopoldt’s conjecture
(4) dimZ/pZ H2(G, Z/pZ) = 1
(5) the maximal abelian p-ramified pro-p extension of K is contained in

N∞ = (K∞(ε1/pn

: n ∈ N, ε ∈ OK∞ [1/p]×)

Then A is a pseudo-null Λ-module.

Proof: It follows from Theorem 3 that Ytor fixes N∞. Since Kab ⊂ N∞, it follows
from Lemma 24 that Ytor = 0. The theorem follows from Corollary 14 (note that
since K has only one prime above p, rp = r ≥ 2).
Proof of Theorem 1 : Let K = Q(ζp) and suppose that K satisfies conditions (1) and
(2) in the statement of Theorem 1. Let K∞ be the compositum of all Zp-extensions
of K. Trivially, conditions (1) and (2) of Theorem 26 are satisfied. Condition (3),
Leopoldt’s conjecture, is well-known ([W], Theorem 5.25). Finally, by Lemma 25,
conditions (4) and (5) of Theorem 26 are satisfied.
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