CUSPIDAL DIVISORS ON A FERMAT CURVE, FOLLOWING ROHRLICH

WILLIAM G. MCCALLUM

Let p be an odd prime. Let F be the curve $X^p + Y^p + Z^p = 0$. We call a point in $F(K)$ a cusp if one of its coordinates is zero. Let J be the jacobian of F. Rohrlch [Roh77] studied the subgroup T of $J(\mathbb{Q})$ generated by divisors of degree zero supported on the cusps. The purpose of this note is to reformulate Rohrlch’s results in terms of the endomorphism ring of J.

The action of the group μ_p of p-th roots of unity on each coordinate induces a faithful action of $G = \mu_p^p/\text{diag}$ on F, defined over K. There is also a natural action of the symmetric group S_3 on F by permutation of the coordinates. The automorphism group of F is a semi-direct product $G \rtimes S_3$, where the action of S_3 on G is derived from its natural action on μ_p^p. Let $R = \mathbb{Z}[\text{Aut}(F)]$ and let I be the augmentation ideal in R. An easy computation shows that any divisor of degree zero supported on the cusps is killed by p in the divisor class group. Thus

$$(1) \quad pIc \text{ is zero in } J.$$

Rohrlch found further relations among the cusps. Our first theorem below reformulates these relations in terms of the action of R on J. Let Γ_j be the image in G of the j-th coordinate axis in μ_p^p, let γ_j be a generator of Γ_j, and let ρ be a 3-cycle in S_3.

Theorem 1. Let c be a cusp defined over \mathbb{Q} and let $\gamma = \gamma_j$, for some $1 \leq j \leq 3$. Then the divisors of degree zero

$$(\gamma^\frac{1}{2} - \gamma^{-\frac{1}{2}})^{p-3}c, \quad (1-\rho) (\gamma^\frac{1}{2} - \gamma^{-\frac{1}{2}})^{p-2}c, \quad \text{and} \quad (1+\rho+\rho^2) (\gamma^\frac{1}{2} - \gamma^{-\frac{1}{2}})^{p-3}c$$

all represent 0 in J.

Proof. There are three cusps defined over \mathbb{Q}, cyclically permuted by ρ. Since conjugation by ρ permutes the subgroups Γ_j, it suffices to prove the theorem for one of the cusps. Let $\zeta = e^{2\pi i/p}$. Following the notation of [Roh77], we denote the cusps

$$a_j = (0, \zeta^j, -1), \quad b_j = (\zeta^j, 0, -1), \quad c_j = (\zeta^j + \frac{1}{2p}, -1, 0), \quad 0 \leq j \leq p-1.$$

(Note that our coordinate Z is the negative of Rohrlch’s.) We choose $c = a_0$. If $\gamma = \gamma_1$ then γ fixes c and the statement of the theorem is trivial. Since γ_2 and γ_3 act as inverses of each other on c, it suffices to prove the theorem for just one of them, say γ_2. We assume henceforth that $\gamma = \gamma_2$.

Date: March 16, 2001.
Let \(x = X/Z, y = Y/Z \). According to the table in [Roh77, p. 98], the function \(x/(y-1) \) has divisor

\[
\sum_{j=1}^{p-1} (a_j - a_0) = \sum_{j=1}^{p-1} \sum_{k=1}^{j-1} (a_k - a_{k-1}) = \left(\sum_{j=1}^{p-1} \sum_{k=0}^{j-1} \gamma^k \right) (a_1 - a_0)
\]

\[
= \left(\sum_{k=1}^{p-1} (p-1-k) \gamma^k \right) (a_1 - a_0)
\]

Since \(a_1 - a_0 = (\gamma - 1)a_0 \in Ia_0 \), we may, by (1), replace the coefficient of \(a_1 - a_0 \) in the above equation by anything congruent to it modulo \(p \). We have

\[
(1 - \gamma)^{p-2} = \sum_{k=0}^{p-2} (-1)^k \binom{p-2}{k} \gamma^k \equiv \sum_{k=0}^{p-2} (k+1) \gamma^k \equiv \sum_{k=1}^{p-1} (k+1) \gamma^k \pmod{p}.
\]

Thus \((1 - \gamma)^{p-2} \) annihilates \(a_1 - a_0 \), hence \((1 - \gamma)^{p-1} \) annihilates \(a_0 \). Thus

\[
(2) \quad (1 - \gamma)^{p-1} \text{ annihilates } a_0.
\]

Non-trivial relations. Rohrich discovered three non-obvious functions which give further relations between the cusps in the divisor class group. We will use

\[
a_j = \gamma^ja_0, \quad b_j = \rho^{-j}a_0, \quad c_j = \rho^2\gamma^j(p+1)/2a_0.
\]

The first relation is given by the function

\[
\frac{\left(\prod_{j=1}^{p-1} ((x - \zeta^j)(y - \zeta^j)^j) \right)^{1/p}}{(y-1)^{(p-1)/2}(x-1)^{(p-1)/2}},
\]

which has divisor

\[
\sum_{j=0}^{p-1} (j(a_j - a_0) + j(b_j - b_0)).
\]

We have

\[
b_j - b_{j+1} = \rho \gamma^{-j-1}(a_1 - a_0)
\]

\[
b_j - b_0 = (b_j - b_{j+1}) + (b_{j+1} - b_{j+2}) + \cdots + (b_{p-1} - b_0)
\]

\[
= \rho(\gamma^{-j-1} + \gamma^{-j-2} + \cdots + \gamma^{-p})(a_1 - a_0)
\]

\[
= \rho \left(\sum_{k=j+1}^{p} \gamma^{-k} \right) (a_1 - a_0) = \rho \left(\sum_{k=j+1}^{p} \gamma^{p-k} \right) (a_1 - a_0).
\]

Thus

\[
\sum_{j=0}^{p-1} (j(a_j - a_0) + j(b_j - b_0)) = \left(\sum_{j=0}^{p-1} \sum_{k=0}^{j-1} \gamma^k + \rho \sum_{j=0}^{p-1} \sum_{k=0}^{p} \gamma^{p-k} \right)(a_1 - a_0)
\]

\[
= \sum_{k=0}^{p-1} \left(\sum_{j=k+1}^{p-1} j + \rho \sum_{j=0}^{p-k-1} j \right) \gamma^k (a_1 - a_0)
\]
The coefficient of γ^k in this expression is congruent modulo p to

$$-\sum_{j=1}^{k} j + \rho \sum_{j=0}^{p-k-1} j = -\frac{k(k+1)}{2} + \rho \frac{(p-k-1)(p-k)}{2} \equiv (\rho - 1) \frac{k(k+1)}{2}.$$

Furthermore,

$$\gamma^3 = \sum_{k=0}^{p-3} \gamma^k \left(\sum_{k=0}^{p-3} \frac{(k+1)(k+2)}{2} \gamma^{k-1} \right) \equiv \gamma^{-1} \sum_{k=0}^{p-1} \frac{k(k+1)}{2} \gamma^k.$$

Thus we conclude that $(\rho - 1)\gamma(1 - \gamma)^3$ annihilates $a_1 - a_0$, and hence that $(\rho - 1)\gamma(1 - \gamma)^3$ annihilates a_0. We can dispense with the lone γ in the middle of this expression, since $(1 - \gamma)^{-1}$ annihilates a_0. Thus

$$\gamma^2 \left((\rho - 1)(1 - \gamma)^{p-2} \right) \text{ annihilates } a_0.$$

We may multiply this element on the left by ρ to obtain another element of the annihilator; this turns out to be equivalent to the second of Rohrlich’s nontrivial relations.

Finally, Rohrlich writes down a function which has divisor

$$\sum_{j=0}^{p-1} \frac{j(j+1)}{2} \left((a_j - a_0) + (b_j - b_0) + (c_j - c_0) \right) =$$

$$\sum_{j=0}^{p-1} \frac{j(j+1)}{2} \left(\sum_{k=0}^{j-1} \gamma^k + \rho \sum_{k=j+1}^{p} \gamma^{p-k} + \rho^2 \sum_{k=j+1}^{p-1} \gamma^{k + \frac{k+1}{2}} \right) \gamma^k (a_1 - a_0) \equiv$$

$$\sum_{k=0}^{p-1} \left(-\frac{k}{2} + \rho \sum_{j=0}^{p-k-1} \frac{j(j+1)}{2} - \rho^2 \gamma^\frac{k+1}{2} \sum_{j=0}^{k} \frac{j(j+1)}{2} \right) \gamma^k (a_1 - a_0).$$

The coefficient of γ^k in the sum is

$$-\frac{k(k+1)(k+2)}{6} + \rho \frac{(p-k-1)(p-k)(p-k+1)}{6} - \rho^2 \gamma^\frac{k+1}{2} \frac{k(k+1)(k+2)}{6} \equiv$$

$$-\frac{k(k+1)(k+2)}{6} - \rho \frac{(p-k-1)(k+1)}{6} - \rho^2 \gamma^\frac{k+1}{2} \frac{k(k+1)(k+2)}{6}.$$

Reasoning as before, we have

$$\gamma^4 \left((\rho - 1)(1 - \gamma)^{p-4} \right) \text{ annihilates } a_0.$$
Therefore
\[
\frac{p-1}{k=0} \frac{k(k+1)(k+2)}{6} \gamma^k = \gamma(1-\gamma)^{p-4}
\]
\[
\frac{p-1}{k=0} \frac{(k-1)(k+1)}{6} \gamma^k = \gamma^2(1-\gamma)^{p-4}.
\]
So finally we get
\[(4) \quad (-\gamma - \rho \gamma^2 - \rho^2 \gamma^2 + \gamma^2 + \gamma^2)(1-\gamma)^{p-3} \in J.\]
The annihilators so far are:
\[pI, \quad (1-\gamma)^{p-1}, \quad (1-\rho)(1-\gamma)^{p-2}, \quad (\gamma + \rho \gamma^2 + \rho^2 \gamma^2 + \gamma^2 + \gamma^2)(1-\gamma)^{p-3}\]
The existence of the first as an annihilator means that we can multiply the second on the right by any power of γ. The existence of the second element and the others so obtained means that in the third element we can replace $1-\rho$ with $\gamma^a - \rho \gamma^b$ for any a and b. This in turn means we can perform the following sort of move on the fourth element: pick any two of $1, \rho, \rho^2$, look at the powers of γ that are the coefficients of those two, then increase one exponent by 1 and decrease the other exponent by 1. This means that we can replace the powers of γ by any others as long as we preserve the sum of the exponents modulo p. Since the sum is currently $1 + 2 + (p + 3)/2 \equiv (3p + 9)/2$ modulo p, we can replace the fourth element by
\[(1 + \rho + \rho^2)\gamma^{\frac{p+5}{2}}(1-\gamma)^{p-3}.
\]
Now
\[\gamma^{\frac{p+5}{2}}(1-\gamma)^{p-3} = \gamma^{-\frac{p+1}{2}}(1-\gamma)^{p-3} = (\gamma^{\frac{3}{2}} - \gamma^{-\frac{3}{2}})^{p-3}.
\]
Also, the other annihilators may be freely multiplied on the right by any power of γ and by -1. Thus, we may write the last three annihilators as
\[(\gamma^{\frac{3}{2}} - \gamma^{-\frac{3}{2}})^{p-1}, \quad (1-\rho)(\gamma^{\frac{3}{2}} - \gamma^{-\frac{3}{2}})^{p-2}, \quad (1 + \rho + \rho^2)(\gamma^{\frac{3}{2}} - \gamma^{-\frac{3}{2}})^{p-3},\]
as required. \qed

Since Aut(F) is transitive on the cusps, any divisor of degree zero supported on the cusps may be written rc for some $r \in I$. Thus the map $r \mapsto [rc]$ defines a surjective map $I \to T$. The kernel is a left ideal in R. For a subset $S \subset \mathbb{Z}[\mu_p]$, denote by S^+ the elements fixed under the involution $\zeta \mapsto \zeta^{-1}$. For a subgroup $H \subset$ Aut(F), denote by $I[H]$ the augmentation ideal of $\mathbb{Z}[H]$. Rohrlich showed that the relations he discovered were the only ones; correspondingly, we can say that the annihilators in Theorem 1 are the only ones.

Theorem 2. Let $M \subset R$ be the left ideal
\[M = Ip + \sum_{j=1}^3 (RI(\Gamma_j)^{p-1} + R(1-\rho)I(\Gamma_j)^{p-2} + R(1 + \rho + \rho^2)(I(\Gamma_j)^{p-3})^+).
\]

Let $c \in C$ be a cusp defined over \mathbb{Q} and let $H_c \subset$ Aut(F) be the isotropy group of c. Then the map $c \mapsto rc$ induces an isomorphism of left R-modules
\[I/(RI(H_c) + M) \simeq T.
\]
Proof. Clearly, for any cusp \(c \), \(RI(H_c) \) annihilates \(c \). As before, it suffices to prove the theorem for \(c = a_0 \). Let \(\tau \in S_3 \) be the involution that fixes \(a_0 \). Then \(H_c = \Gamma_1 \rtimes \langle \tau \rangle \). Let \(\rho \) be the permutation \((XYZ)\). Then \(H_c, \gamma_2 \), and \(\rho \) generate \(\text{Aut}(F) \). Hence a \(\mathbb{Z} \)-basis for \(R/RI(H_c) \) is \(\{\rho^i \gamma_2^j \} \), \(0 \leq i \leq 2 \), \(0 \leq j \leq p - 1 \). It follows that \(I/(RI(H_c) + pI) \) is a \(\mathbb{Z}/p\mathbb{Z} \)-vector space of dimension \(3p - 1 \). Let \(\pi = \gamma_2^{1/2} - \gamma_2^{-1/2} \). Then \(\pi \) is a generator of \(I(\Gamma_2) \) on which the involution \(\gamma \mapsto \gamma^{-1} \) acts by \(-1\). The image of \(M \) in \(I/(RI(H_c) + pI) \) is generated as an \(R \)-module by

\[
\pi^{p-1}, \quad (1 - \rho)\pi^{p-2}, \quad \text{and} \quad (1 + \rho + \rho^2)\pi^{p-3}.
\]

Since

\[
\pi^{p-1} = \alpha \rho + \beta (1 + \gamma + \cdots + \gamma^{p-1}),
\]

for some \(\alpha, \beta \in \mathbb{Z}[\gamma, \rho] \), we have \((1 - \gamma)\pi^{p-1} \in pI \). Hence the submodule of \(I/(RI(H_c) + pI) \) generated by \(\pi^{p-1} \) is generated as a \(\mathbb{Z}/p\mathbb{Z} \)-vector space by \(\pi^{p-1} \), \(\rho \pi^{p-1} \), and \(\rho^2 \pi^{p-1} \), hence has dimension 3. Thus \(I/(RI(H_c), pI, \pi^{p-1}) \) has dimension \(3p - 4 \). Finally, the submodule of this latter module generated by \((1 - \rho)\pi^{p-2} \) and \((1 + \rho + \rho^2)\pi^{p-3} \) has, as a \(\mathbb{Z}/p\mathbb{Z} \)-vector space, the basis \((1 - \rho)\pi^{p-2}, (\rho - \rho^2)\pi^{p-2}, \) and \((1 + \rho + \rho^2)\pi^{p-3} \). Hence \(I/(RI(H_c) + M) \) is has \(\mathbb{Z}/p\mathbb{Z} \)-rank \(3p - 7 \). Since this is the same as the dimension of \(T \) computed by Rohrlich, and since, as we have already remarked, \(a_0 \) is clearly annihilated by \(I(H_c) \), it suffices to show that \(a_0 \) is annihilated by \(pI, \pi^{p-1}, (p - 1)\pi^{p-2}, \) and \((1 + \rho + \rho^2)\pi^{p-3} \). This is what Theorem 1 tells us.

\[\square\]

References