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Introduction

The purpose of this lecture is to present the development of the so-called “dress-
ing method” in the theory of integrable systems. This method, allowing to find
both new integrable systems and their exact solutions, is one of the most pow-
efful tools in the nonlinear mathematical physics. It is clear now that a natural
field for its applications is the theory of integrable nonlinear equations in 241
dimentions, in other words, the theory of integrable evolutional equations on

» 3

(x,y) plane. We use here and further the words “integrable system” in a collo-
quial meaning — most of this systems are not integrable in a strict Louville’s
sense. Nevertheless they have infinite sets of motion integrals and exact solu-
tions and they could be studied effectively. There are two different versions of
the dressing method in 241 dimensions. The first one, based on Volterra-type
linear integral equations, was introduced in 1974 in the article of A.B.Shabat
and the author [1]. The second version, using -problem on the complex plane
was developed by S.V.Manakov and the author in 1985 [2]. One of the purposes
of my lecture is to show that both mentioned approaches are equivalent in some
sense. This fact plays a key role in the further progress of the theory.

My second aim is to outline some possibilities for generalization of the dress-
ing method. We shall see that this method can be expanded to cover broad new
classes of integrable equations. It is a serious work to explore all the new ca-
pacities. We shall do just the first steps in this direction. I will display several
new integrable equations mostly with space- and time-dependent coefficients
and show also some new interesting solutions of previosly well known integrable
equations.

1 The “old” dressing method.

Let us describe shortly the principal idea of article [1]. We start from the equa-

tion:
o0

?Aa“nv+m,?vuv+\ K(z,s)F(s,z)ds =0 (1.1)

T
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Here F is a known and K is unknown N X N matrix functions, depending
also on some additional variables y; (j = 1,...,n). The equation (1.1) could be
rewritten in the symbolic form

K+F4+KxF=0 (1.2)

The first step in the dressing method is finding ouf a pair of operators D, D
satisfying the equation

DK + DF + DK «F+ K« DF = 0 (1.3)

The operator D is bare while the operator D is dressed one. An operator D is
cold dressible if a corresponding D could be found. The most simple dressible
operators are differential. Let us put N = 1 (K and F are scalar functions) and
choose the operator D in the form
oOF 0’F O9°F
DF =+ — — — 1.4
5y T Gz T 922 (14)
Here « is an arbitrary constant. Applying then operator D to (1.1), we find
after a simple calculation that (1.3) is valid if

- 9K 9’K . 0’K
DK =« oy + 52 +U(z)K — 552 (1.5)
Here U(z) = —2 £ K(z,z) . So the operator (1.4) is dressible. More general
example of dressible operators was found in [1]. Let N be arbitrary and
m:
Lo = lp(z, v, ...Q:vmez + .. (1.6)

be a linear ordinary differential operator of order n. All its coefficients [;(i =
0,1,..n) are N x N matrix functions. Let us consider the operator

bwnammLL%nEu (1.7)
Yy

Here LY is a coadjoned operator acting from right side on the variable z. The
central result of the article [1] is formulated as a following: the operator (1.7) is
dressible. The dressed operator D has a form

DK = 2K

%+;\|>\$T . (
%:IH

[ =lp—+... 1.9
L=loso+ (1.9)

(1.8)
Here L = Lg + L and

is a linear differential operator of the order n— 1. Its coefficients /; depend upon
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the function K(z, z,y;). Let us consider the set of functions
Ki(z,y) = (=— - —)'K(z,9,2)|,., (i=0,1,..,n—1)

Here coeflicients £; are polinomial on K;(0 < j <) and on their x-derivatives.
In the previous example we had
0? o? d

L=—+U(z) U=-2—K;

Lo= 9z Ox? dz

In this case mzo =0, sz = U. To construct an integrable system we should have
two commuting dressible operators

D, F = S.I% +LiF - FLyt
91
OF

DyF = ag—+L2F - FL3t (1.10)
9y2

The condition of commutativity [Dy Dy] = 0 gives

oLz oL}
—0 _ LY L2 =0 1.11
ay Em Qi 572 + [Lg, Lg) ( )
Assume now that

bwwﬂ =0 bm&ﬂ =0 AHHMV

In accordance with (1.11) these equations are compatible. Supposing that the
equation (1.2) could be resolved uniquely, we have

DK =0 DK =0 (1.13)

and hence 512 oL
i 1 121=0 1.14
ay QM\H a2 %Qm + ﬁh ) u A v

From (1.14) and (1.11) we find

dL* [} . . I
SllSS + (L, L)+ (LY L3 + [L L*] =0 (1.15)
9y 9y

This is a system of nonlinear equations on the coefficients of operators JAES
This system is imposed on the finite set of functions K; in fact. After solving
the equation (1.1) we can get K(z,z,y,...yn) and some definite solutions of this
system. Assuming that

L= o (1.16)
3

we have after some computations the expression
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|
|
|

o3 0

2 O U—+W 1.17
L= gt g+ (1.17)
Here
% 7] a
W=12—Ko+12—K; — GUKy = 3U,; + 6aa—K
Oz? oz dy
Considering further ay = —1,y, = ¢,y = «,y; = y one can find from (1.15)

that the function U(z,1,y) satisfies the Kadomtzev-Petviashwili (KP) equation

o 80U U
32 57 T 60U 5= + Usea) +30°Uyy = (1.18)

In the case a? = —1 it is the KP-1 equation, in the case o® = 1 it is the KP-2
equation.

2 Two comments.

1. The developed theory is still correct if the operation K * F is understood in
more general sense:

K+ F=(1-p) \ag K(z,$)F(s, 2)ds — t\

T

K(z,s)F(s,z)ds (2.1)

In particulary, instead of (1.1) we can start {from the equation (2.1) with p =1

K(z,z)+ F(z, Nv‘ - \ K(z,s)F(s,z)ds =0 (2.2)
or from the equation
K(z, 2)+ F(s, Nv+w\ K(z,s)F (s, 2)ds— w\ K(z,8)F(s,2)ds = 0 (2.3)

Varying p at the same F we will get different solutions of the same nonlinear
equation (1.15). In the matrix case u could be replaced by a matrix, commuting
with operator Ly ([Lg'?, u] = 0).

2. The system (1.14) could be considered as an integrable nonlinear system
instead of (1.15), if the unknown functions are the coeflicients of operators L2,
The coefficients of “bare operators” hw.m satisfies the same system of equations
(1.11). It means that we can do dressing procedure starting from any given solu-
tion of the nonlinear system (1.14). If the coefficients of operators hw.m are con-
stant we speak about dressing over a trivial background. In an opposite case we
have dressing over a nontrivial background. It was used first by E.A.Kuznetzov
and A.V.Mikhailov [3] to describe a propagation of a soliton on a knoidal wave
in the KdV equation. Nontrivial dressing for 2+1 dimension equations will be
studied in the article of A .Fokas and the author [4].
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3 The generalized N-wave equations.

Suppose now that we have three or more commuting dressible operator D;([D;, D;] =
0,7 =1,..,n),n > 3. Suppose also that a function F satisfies the set of equations

D,F=0 i=1,..n. (3.1)
After the dressing procedure we get the system of w:A: — 1) equations

L’ mh,
i— — Lt [’ 3.2
oo = oy g + L 1] = (3:2)
Only (n — 1) of these equations are independent, all others are satisfied due
to the Jacoby identity. The system (3.2) is overdeterminated but compatible.
It could be used for constructing of new integrable systems. It is possible , for

instance, to exclude all x-derivatives from the system (3.2). Let

a;=1(i=1,2,3) L= ,:.%m (I, ) =

Here I' is a diagonal commuting matrix. It is easy now to get for dressed oper-
ators
ri=rZ (%, Q]
oz

Q= Nmﬁa.S,@m,@mV

And the system (3.2) became the following

9 iy 9 m@ _ 9@ . S
5, 5@ = g P, QI+ BT — FEB [, QLI Q=0 (33)

Multiplying the equation (3.3) by Ij from the left side and doing the cyclic
permutation we drop out all the terms containing 99 " and get as a result

oz
9Q

m&wAN %“S

— Iy — L;QL;QI;) =0 (3.4)
Here €1 is a totally antisymmetric unit tensor. The equation (3.4) is a natural
generalization of so-called “N-wave” system. This equation is invariant under

the transformation
L — I + al; + Bl

If the matrix Iy = 1, the system (3.4) coincides to (3.3) after the change
% — %m. For N = 3 we can put one of the matrixes I; (i = 1,2, 3) to be scalar

and get the equation (3.3). For N > 4 the system (3.4) is really more general
then (3.3). About the system (3.3) see also [4].

606



4 Shock-wave on solution.

Let us now concentrate our attention on the application of the “old” dressing
method to the equation KP-2

9

We will use the integral equation (1.1). The function F satisfies the system

OF 9*F 9%F

dy | 9z 922 =0
oF *F O3F
ot +4( dz3 = 923 ) =0 (42)
One can find the solution (4.2) in the form
F=¢(z,y,1)0(z,9,1) (4.3)
a6 8% 20 520
-t 55=0 ——75=0 4.4
dy * 5 dy 022 (4.49)
9¢ 9% 89 = 9%
37 T35 =0 mlw\..*.AMMMIO (4.5)

To provide a convergence of the integral in (1.1) let us.demand F' vanishing
at £ — 00, 2 — 00. We may find ¢, 0 in the form

¢ = \ F(A)emre=ATutar%t gy (4.6)
0
6= \ h(A)e= Ay A y+art g\ (4.7)
0
The equation (1.1) could be solved easily
K(z,z) =9(z,y,t)0(z,y,1) (4.8)
Here
_ ¢
Y=g [ ¢0da
. d _ d @0
U = w&ab?vav = Iw&.ﬁf. T &Q&av (4.9)

This solution could be rewritten in the following form

&w

log R (4.10)
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R = I\gﬁ% (4.11)

We found an exact solution of the KP-2 equation. Let the functions f(A), h(A)
now be real and posttively definite and vanishing if A — oo faster than e~ AN at
any A. Under this assumptions the solution (4.9) has no singularities on (x,y)
plane. In the particular case f(A) = h(X) this solution is symmetric with respect

to changing sign of y : U(z,y) = U(z,—y).

Choosing
FON) = h(X) = V20s(A = v) (4.12)
we have
202
Uz, t) = (4.13)

ch?v(z — 4v?t)

It is a solution of amplitude v? moving in x-direction. It is very interesting to
study a more general solution in some sense close to the soliton. Let us assume

FO) =1\ = V2vg(A - v) (4.14)

The function g(&) > 0 is concentrated on the support —A < & < A. At condition

.w. — 0 we find

R=1+¢%% d(z —2vy— 42002 + 2vy — 471)
Here 2 = z — 4%t is a coordinate in the moving frame, while

A
O(z) = . thvmlmumm

The solution (4.9) describes the process at “straghtening” of initially curved
solution, as it is drawn on the picture 1 (Section 5). This process is corresponded
by propagation of two “shock-waves of compression”, producing in the negative
half-plane ' < 0 some extended weak radiation. To get a more general solution,
let us put

N
F =" én(z,y,0)0u(z,,1) (4.15)
n=1
bz, 1) = \ Fa(A)erE X gy (4.16)
0
Op(z,y,1) = hp(X)e AT AT gy (4.17)
0

The solution is given by the formula (4.10)

R = det : %G. + ,\ ¢;0;dz __ A%.Hmv
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This solution describes a nonlinear superposition on N curved and straghtening
solutions.
One can use, instead of (1.1), the equation (2.2). In this case a simple solution
has the form
&m
U = 2—InR

dx?
T

R = 1+ 0dz
Here -

Aw — \ .\.Ayvmyal»u@l»yus&\/
0

\ bﬂyvmya..*.yuelk;uﬂ&\/
0

SY
Il

One can see that this equation could be obtained from the previous one by
the single transformation 2 — —z,t — —t. Performing this transformation in
(4.14), we have a more general solution

d? T
Tz logdet || 6; ; + \!oo ¢:0;0z || (4.19)

U=2

5 Towards the "new” dressing method.

The obtained solutions are interesting enough from the view point of physics.
But they are very far from some kind of general solutions of KP-2. The general
solution could not be found by means of the “old” dressing method. Any attempt
to choose the function F, different from described above, gives the singular
solution on (x,-y) - plane. It seems attractive to choose functions ¢ and @ in the
form

6 = \ J(k)eik Ry g (5.1)

OO

mu \ ism%;;é?% a.mv
—00

But one can see that when y — oo the function ¢ grows exponentially fast,

while 0 decreases slowly. As a result the determinant R becomes zero on some

line = zo(y), where the solution has severe singularities U ~ ¢/(z — zo(y))?.

Using the previousely described version of the dressing method we could not

find even such fundamental solutions of KP-2 that are small in some proper
norm and close to solutions of the linearized equation.

It is clear that the dressing method should be seriously generalized. To do

so we will start from the equation (2,3). ( Note that the framework of the “old”
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dressing method is almost useless, because it produces only singular solutic
To generalize the dressing method, we should release the restrictions on
asymptotic behavior of F(z, 2) at £ — %00, z — %00. Let us study the opera

7 1f(z) = W\lMo f(z)dz — W\a8 f(z)x (5

This operator is well-defined not only if f(z) = 0 at z — +oo fast enough. |
f(z) be presented by the Fourier transformation

@ = [ et (5
In this case -~ )
O f(x) = ! Mvm:% (5

Here %188 is a principal value of the integral. Assume now that f(z) is rep
sented by the integral

f(x) = [ flk,k)e*=dk (5
Q

Here Q is some domain in k-plane. In the general position f(z) grows expone
tially at £ — 0.

The operator (5.3)could be extended to functions (5.5) by the following w

%IH ”* \.Abvkvwlﬂa&k&m Am
0 ik
The symbbol § means that we understand 1 /k as a limit
1 = lim £

TG e (5-

In the particular case when Q is a real axis, (5.6) coincides with (5.4). If tl
function f(k, k) is decreasing fast enough at | k [— oo, the whole k-plane cou
be chosen instead of Q. The only thing that should be done to extend treme,
dously the possibilities of the dressing method is to understand the integrals |

(2.3) as it was described above. Returning to the equation (2.3),let us represer
F and K in the following form

Fo= —= [ T(v,0,) Nei"*=2E=2) qpqpdrd) (5.

K = II\QQ}?;@-SKM (5.1¢

and denote that .
G = Tellv=2)= (5.11

Let us substitute(5.8) and (5.9) into (2.3) and do integration according to th
rule(5.6). The equation (2.3) is satisfied if 7" and @ obey the following equalit
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QAa,\/,MVI.\QT\ 7, \/VS\%\+|

v—p
Introducing the function
X3 = H+ e, :p QEmA g (5.13)
and using the well-known formula
19 1
—— = - 5.14
Toxa—y - A=) (5.14)
we get Oy
Qz,\ ) =i w
Hence the equation (5.11) could be rewritten in a form
JOx _ _ N Vs
%» x(z, v, 0)G(v, 7, A, N)dvdp (5.15)

It means that the generalized equation (2.3) is equivalent to the equation which
provides the solving of “nonlocal & — problem”(5.14). It is assumed that the
— problem is normalized by the condition

x—1 at |A] = oo (5.16)
The other possibility to solve S:m problem is using the equation on a func-
tion
( Q ) v b
=1- I.\ X2, 1, 7)G(v, 7, p v&t&tgt&t (5.17)
T A—pu

In these cases we can assume that all functions are N x N matrix functions. If
the function F' satisfies the equation (3.1), and functions (i = 0,1,...) don’t
depend on z,the function G obeys the equation

MW + Li(iv)G — GLF (iA\) =0 (5.18)

Here L;(iv) is the symbol of the operator L;. As a function of parameter z, the
function G obeys also the equation

9
wm =i(A-v)G (5.19)
In particular, for the KP-2, we have
G = Go(v, 1, A, V)i A=)t (A =r)y—4i(x* =)t (5.20)

Suppose Go(v, 7, A, A) = Go(A, A)6(A + v)6(X + D). In this case the dependence
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on the variable y drops out, and we move from the KP-equation to the KdV-
equation
Ui+ 6UU; +Ugge =0
[ence, we found that in order to solve the KdV equation we should solve the
following - problem
JOx
1—=
175

= Go(\, N)e?re=8iEty (), =) (5.21)

This fact was established in the article [2] and reopened after by many authors.
The function Ko = K(z, ) is connected with the function @ by the formula

= ﬂw \ Q(z, p, i) dudp (5.22)

There is one obvious difference between the old and the new versions of the
dressing method. The function F' has two independent variables — as arbitrary
as the general solution of an evolution equation . On the contrary , the function
G has four independent variables X, A, v, . It leads to a conjecture that this
version of the dressing method could be used for solving an equation in more
than 2 + 1 dimensions. This is an illusion . The different choice of T' could lead
to a different Q but to the same K and to the same solution of the equation.
Oaly the function F' is important, it means that the function 7" is defined up to
adding an arbitrary T

T—T+T (5.23)

where

T(v, 7, X, A)e"®=22)dydpdAdX = 0 (5.24)

Note, that if Q in (5.5) is bounded domain with boundary I', an integral on the
domain could be replaced by the integral over I'

\92\93 ke g = ﬂm\ F(&, &)t de (5.25)
where
f(&, 8 = Ik, Jr; (5.26)
al—Fk

A similar formula is also correct for F'.

6 The new dressing method

In the advanced variant of the dressing method we starts directly from the 9-
problem (5.14) with the condition of normalization (5.15).We will assume this
problem to be solvable by the unique way.It means that the function x obeying
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equation (5.14) and vanishing at large A
x(A) —0 |A] — o0 (6.1)

is identically equal to zero : x(A) = 0.
Let us introduce three commuting first order operators D;(i = 1,2, 3)

9y
Dix = X

ix i (A 6.2
2K i) (6:2)
using three commuting [I;()), I;(A)] = 0 matrix functions of the spectral param-
eter X. In the first step we will assume them to be polynomial. The function G
could be consider as the kernel of the integral operator G, required to commute
with D;. This requirement imposes on G the system of equations

oG .
5= i(L;(v)G = GI;(X)) (6.3)
This system could be solved
G = M Go(v, 7, A, )™ TN (6.4)

Here ®(A) = > It (N)ys.

Let us rewrite (5.14) in a symbolic form

Ix
= =x*G : 6.5
iS= (6.5)
Polyvomial on A operators D;, commute with the operators /9. Due to (6.3)

one has 5
i—D;x =D;x*G 6.6
i Dix X * (6.6)
Let R = R(D;, D3, D3) be any differential operator polynomial on D;. Its co-
efficients are a matrix function of y; acting on x from the left side. Obviously
ROJOX = 8/OAR, we have
7]

L Ry = Ryv+G 7
ioyRx = R+ (6.7)

The function Ry has at A — oo a polynomial-type behavior and in general it

is not equal to zero. But for any given function x it is possible to find a set of
operators R such that Ry — 0 at |A\| — co. It means that

Ry=0 (6.8)

It is obvious that the operator R constitute a left ideal in the noncomutative
ring of operators R. It was shown in [2] that it is possible to find two linearly
independent operators Ry o serving as a basis in /2. The function x nearby the

infinite point could be represented by the expansion
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xHH+w\Mo.+wlw (6.9)

The coefficients of R are polynomial on x; and on their derivatives. Let us
consider the very simple example

Iy (A) = I A ??NL =0 (6.10)

Now
Dix = —— + xI;\ AO.HHV

Let us introduce the operators

Li; = LDj—-1;D;—Uij (6.12)
Uj = i(Lixol; — Ijxols) (6.13)

One can see that L;;x ~ 0(%).Hence
Lijx=0 (6.14)
With order &+ we have from (6.14)

dxo dxo
L2 Ui, 6.15
%@.». J @.Qﬁ. uX A v

N.Q.Xub - Nﬁ.vﬁb. = Nm

Multiplying from the right side by I} and performing a cyclic permutation we
drop out all the members containing x;. As a result, we get
IXo .
ms..u.am.ﬁw”lcﬁbn — stXc.N.N.XoNaV =0 A@H@V
j

One can see that we get the equation (3.4) where Q = ixo.

The question arises — how many of the new integrable equations one can
find using the new dressing method instead of the old one. Note that if one of
the functions I; is scalar and linear (I3 = A)we get the complete set of equations
that is given by the old method. In the general case we could get some new
equations . But the comparision of equations (3.4) and (6.16) show that using the
procedure of excluding z—derivatives from an initially overdeterminated system,
as was described in section 3, one can get by the old method the same equations
that may be obtained by the new one.

The great advantage of the new method is the possibility to put functions
I, I, I3 be rational instead of polynomial. In this case

1e) 9
%les. ﬂm Usmw.,.
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If for instance

I;
L) = FEw
then
bb b .I@I. = \\ﬂNﬁ%A\/ - v:v AOH‘NV
o3\ i)
For a general operator R = R(Dy, D4, D3) the commutator
3 a
wﬂm mw:\/. =A(A) (6.18)

is not equal to sero. In general A()) is a sum of §-like singularities in all poles
of R.

In order to find the operator R (6.8) obeying the equation (6.18) one should
require Ry — 0 at A — oo and

It was shown in [2] that both these conditions could be satisfied for at least
two linearly independent operators R1, Rs. These operators are direct analogs
of “dressed” operators Ly, Ly in the old version of the method. See also [11,12].

7 Small solutions and dispersion laws

In the old dressing method the variable z is the special one. In the new method
all the variables y; have the same abilities. In the old method we must consider
the global behavior of the solution on the z-axis, in particular at * — Zoo.
That is an inheritage of the Inverge Scattering Transform. The new version of
the method cuts any connections with the Inverge Scattering Approach. A solu-
tion obtained due to the d-problem is essensially local in the space (y1, y2, y3).-In
general it could grow arbitrarily fast at |y| — co. Moreover, it could have singu-
larities (as described in section 5) on some set S in the space (y1, ¥z, y3). In the
general position this set is a surface, it is obviousely that S coincides with the set
where the d-problem (5.14) is unresolvable. The question arises —how to choose
the “dressing function” Go(v, 7, A, A) to produce a “good enough” solution of
the nonlinear system. In order to formulate the problem more accurately, let
us suppose that one of the variables is “time”(y3 = ¢, for instance), while two
others (y;, yo) are “spatial” variables. In other words , we consider our nonlinear
system as an evolutional one. (Note, that a corresponding Cauchy problem may
be ill-posed.)

Now let us try to find G, in a such way that the initial data (at y3 = 0) are
regular in the plane (y1,y2) and vanish at |y| =— oo. This problem could easily
be solved in the limit Gy — 0. In this case the solution of §— problem is given
by the first iteration of the integral equation (5.17). We have
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x=14 L [En¥ VM@ dvdpdgdE (7.1)

i A=
Comparing (7.1) and (6.9) one can find

tn = = [ €°G(v, 7, €,&)dvddedE (7.2)

T

Assuming that the matrixes I;()) are diagonal

IFP(N) = bapIi (V)
we have for x&#

X2 = = [ €GP (v,7,¢, &) Tam WO K0 ayapigas  (7.3)

i
To provide the regularity of x%# at y3 = 0 it is enough to require

Im(Ig(v) — I (&) 0 (7.4)
Im(Ig(v) - I5(€) = 0 (7.5)

i

These conditions define a two-dimensional manifold A*? in four-dimensional
‘space VR, VI, &R, &1 (€ = €r + €1, v = vr + ivr). The function meAF 7,€,8)
should be concentrated on this manifold. If If*,(v) are real at real v, the manifold
A%P includes the product of two real axis R! x R!. It could also include other
components. Let us consider some simple examples .

1. KP-1.
a=0£=0 Li(v)=v L(v) =12

From (7.4), (7.5) one can get

vR=¢r=0
and _
Go(v,1,€,€) = Go(vr, Er)S(v1)8(ér)

So the manifold €2 is the product of two real axes. The function x is analytical
in both half-planes Im > 0,Im < 0 and have a jump on the real axis. The
equation (5.14) describes a nonlocal Riemann problem on the real axis.

2. KP-2.
a=08=0 L(v)=v L(v) = av? a ==t
From (7.4), (7.5) one can get
Er=vg ErR=—-vp or E=—v (7.6)
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So

Go(v,7,€,8) = Go(v, )6(§ + 7) (7.7)
Instead of (5.14) we now have
s.w. — QOA\/, \l/vXA.l\l/vm@.mvi.wvslmyuIwmve+f.9m+wuvu A.N.mv

This result was first obtained in [5 ].
The formula (7.3) allows to solve one rather important problem. All nonlinear
equations under consideration have one trivial solution

0 (n=0,..)

Xn

These equations could be linearized in the vicinity of this solution. After the
linearization one can get N? independent linear equations with constant coeffi-
cients for different elements of the matrix qu.Hvomo equations could be solved
by the Fourier transformation method. Assuming

X o gilpyitavatuwys) (7.9)

one should find N2 relations

Rop(w,p,q) =0 (7.10)

The formula (7.3) shows that this relation could be found directly before cal-
culating the explicit form of a nonlinear system. Supposing that (7.4) and (7.5)
are satisfied, one can find (7.9)in a parametric form ‘

p = Re(If(v) - I{(€)) (7.11)
¢ = Re(I5(v) - I£(9)) (7.12)
w o= IZW) - (7.13)

Equations (7.10)—(7.12) show that Reg = Rge and we have N(N + 1)/2 inde-
pendent relations. Expressing v and ¢ from (7.10),(7.11) and substituting them
into (7.12) one can find the full set of “dispersion laws”.

w = wap(p, 9) = wpa(p, 1) (7.14)

Finding the whole set of dispersion laws hidden in a given nonlinear system is
the first step for this system to find any applications (see also [6]).

8 On extention of the dressing method

We shall start from the d-problem

%X yxG= \x? 5)G(v, 7, A\X)dvdp (8.1)
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and introduce a set of operators

O

D;x = £

+x* Vi i=1,.,n (8.2)

Operators V; in (8.2) could be some integral operators in general. In the
general case their kernels V;(v, 7, A\, A, y1...yn) depend on the variables y;. In the
previous case we have

Vi = L(A)S(A = v)6(A — D) (8.3)
Now, suppose that G satisfies the system

MerQi\ Vit G =0 (8.4)
Yi

This system is assumed to be compatible. A sufficient (perhabs, not necessary)
condition is commutativity for the operators

[Di,Dj]=0 (8.5)
We now have
iD X = Doy« G (8.6)
k5T a kX .

Again, let us consider that R = R(Dy,...D,) is polynomial on D;. Its coef-
ficients are the N x N matrix function on ¥, ...yn,. Obviously

mx
=Rx*G 8.7
Ros = Rx+ (8.7)
suppose we have found an operator R satisfying the conditions
~0x 0 «
= =R — 0 t|A| — 8.8
2% = gyl Rx at|A| — co (8.8)

Assuming that d—-problem (7.1) has a unique solution,we now have
Rx=0 (8.9)

The condition (8.8) could be satisfied for only for concrete x. So coeflicients of
R depend on x and (8.9) is a nonlinear equation for the function yx, having a
known solution, depending on A. To exclude this dependence one should have a
set of equations

Rix=0 i=1,.k 2<k<n (8.10)

It is obvious that all the equations (8.10) are compatible.
It is hard to develop this theory for general integral operators. So we shall
assume that V; are differential operators on A with polynomial on A coefficients.
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Even this very special case is not so simple. Let us consider an example (N=1)

. Ox 5 0
Dyx = P +11Vy =A== % (8.11)
_ 9 2
Dox = 5o+ Vix (8.12)
It is possible to construct two compatible equations
X | 429X
(= ¢ = 0 8.13
Rix = 5=+ 1A 5% + ixox (8.13)
% /
Rox = (Dy+ D% +2i %gv =0 (8.14)
The last equation may be rewritten in the form
Ix  9?x .. 9% 0
2 ¢ =0 8.15
gy 5z T lignag Y2 X T (8.15)

Let us consider A — oo and use the expansion (6.9). In the order + we have

Ixo0 | .
2ix1 = P +ix3
o  Pxo .01 .. 9xo
—2 2ix =0
Ay + Oz? o +2tXo oz
7 8 o? 9
X0 X0 . X0
—_= 210 —=— 8.16
By~ dz2 T X0, (8.16)
It means that function W = iy, satisfies the Burgers equation. Adding to
(8.11),(8.12) the third operator
9
D3x = %w« + 4iV3x (8.17)

one can find that xo satisfies two other Burgers-like equations. It is interesting
that at the same time the function U = msm © satisfies the KXP-2 equation.

In the previous example, D; belongs ﬁo the simplest class of commuting
differential operators with polynomial coeflicients
v

X 4 Pi(Vo)x (8.18)

DYx = Fur

Here P; are polynomials on some elementary operator Vg with constant coeffi-
cients. In the matrix case, all coefficients of P; must commute with V5. To get
more general polynomial differential operators one could apply to D? a gauge
transformation

D; = e~ ® D% (8.19)
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Here @ is polynomial on A with y; independent coefficients. This case includes
the previously described (in section 6) variant of the dressing method. Assuming

9
O — . 3
D§ =35 =5 L\ (8.20)
one can get
Dix = wx +ixL() i=1,2,3 (8.21)
3 2
To obtain a more advanced example, put in the N x N matrix case
2]
Doy = X 4 Ic + oM A (8.22)
Ay
1=1,2,3 [A;4;]=0 [Ai,a] =0

After the transformation (8.19), using

®=\Y Ly, [A,L]=0 [L,L]=

we have

~ o o ~
Dix = Dix — idA;x = 22X 4 %C +aXA; + idxD; +i[a®4]  (8.23)

Jy;
N. =I;+ adA;
It is easy to show that
N\S.X =0 Am.MAV
with
Ly = za.@ Nz xs. - Uj; (8.25)
Ui = i(lixol; — Ijxol)
Acting like we did in section 6 one can get the equation for xo
=0
ein (T mwo T — ifixolyxo T + ili[x1® A )T — alixo AT = (8.26)
j

This equation is a generalization of the N-wave system (3.4),(6.16). Ma-
trixes I; are now linear functions of coordinates. The system (8.26) may have
some physical applications. Using the operators (8.18), (8.19) we can get a very
broad class of “integrable” systems. To show that , let us consider the operators
(8.20), (8.21) producing some nonlinear integrable systems, as it was described
in section 6. Let us add to the operator D? another one operator

dv
DOy = 22 4 vox (8.27)

ar
Here V4 is any differential operator
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%xo

an o+ ...

Vox =

commuting with the matrixes I;.
Let us also perform transformation

®—d=0+ PN [P(V), L] =0
Here P()) is an arbitrary polynomial. Now the operator
Dy = e DYei® (8.28)

commutes with operators (8.21). Using any triplet of operators (D1, D2, D4),(D1, D3, Da),(D2, D3, Dy)
as a basic system one can get three new nonlinear systems, compatible with the
initial equations. All of them are symmetries of the initial systems. If Vg # 0,
these symmetries have coordinate-depending coefficients. It is plausible that on
this way one may find all the symmetries of 2+ 1 dimension integrable systems.

9 Some perspectives

A further developing of the dressing method depends upon a progress in the
classification of the operators D;. Besides the class of these operators, described
in the section 8, one can separate two other natural classes.
1. The class of operators D; not including A-derivatives
dx .
D;x = ®|+XQ~A\/;\~V 1=1,2,3 A@HV
Yi
Here U; = U;(), y) are rational functions on A with fixed poles. In fact, poles of
U; may depend on y;. The commutativity condition [D;D;] = 0 gives

NI | [U;,U;]=0 (9.2)

The equations (9.2) could be solved by 1+ 1 variant of the dressing method,
using a local §-problem or a local Riemann problem. This variant of the dressing
method was described in article [7].

2. The class of operators D; including only first A-derivatives with a scalar
coeflicients. 8 s

D;x = %'WM + MW«.S\@. + xU; (9.3)
Here U; = U;()\,y) are matrixes, while W; = W;(A,y) are scalar rational on A
functions. They have the same (for a given 7) y-dependent poles. The commuta-
tivity conditions impose the well definite system of equations on this poles and
on the residues of W; and U; ([8], see also [9]). This system also could be solved
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by some extention of the dressed method, based on the local &-problem. This
variant of the method was called in article [8] “The Inverse Scattering Method
with a Moving Spectral Parameter”.

To go further we should consider that W;(},y) are matrix functions, or
introduce A-derivatives of a higher order. The only known class of such D;-
operators was described in section 8. To find more general classes we should
use the old dressing method, maybe in its modernized form, introduced in this
article. Let us suppose that the variable z is in fact a spectral parameter (z = A).
To find the D;-operators we should find a solutions of the system (3.2) that
are rational functions of z. In general, their poles depend on variables y;. To
classify the solutions of this type is a very intriguing mathematical problem. For
the KP-equation this problem was solved by Krichever (see, for instance [10]). It
was shown that in the y-dependent case, the system governing moving of poles
coincides with the well-known Calogero- Moser system of particle of the axis
with pair interaction Uj; ~ a..lﬁf. 5

Let us do one concluding remark. A mathematician, using the dressing
method to find a new integrable system, could be compared with a fishman,
plunging his net into the sea. He does not know what a fish he will pull out. He
hopes to catch a goldfish, of course. But too often his catch is something that
could not be used for any known to him purpose. He invents more and more
sophysticated nets and equipments and plunge all that deeper and deeper. As a
result he pulls on the shore after a hard work more and more strange creatures.
He should not despair, nevertheless. The strange creatures may be interesting
enough if you are not too pragmatic. And who knows how deep in the sea do
goldfishes live?
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