Lecture 1

Scattering in the Schrödinger equation

We start with equation:

$$\frac{d^2}{dx^2}\Psi + k^2\Psi = u(x)\Psi \qquad -\infty < k < \infty \tag{1.1}$$

u(x)-real function satisfying the condition

$$\int_{-\infty}^{\infty} (1+|x|)|u(x)|dx < \infty \tag{1.2}$$

 $k=k_n$ is eigenvalue if the solution f_n of equation (1.1) tends to zero at $|x|\to\infty$. It is well known that this solution is unique. Indeed, if Ψ_1,Ψ_2 are two solutions of (1.1) then

$$\{\Psi_1, \Psi_2\} = const = C \tag{1.3}$$

Here $\{\Psi_1, \Psi_2\} = \Psi_{1x}\Psi_2 - Psi_{2x}\Psi_1$ -wronskian of functions Ψ_1, Ψ_2 . If Ψ_1, Ψ_2 -eigenfunctions, they tend to zero at $|x| \to \infty$, hence C = 0 and Ψ_1, Ψ_2 are proportional to each other.

Eigenvalue k_n must be pure imaginary. Indeed, if k_n is complex

$$\frac{d^{2}f_{n}}{dx^{2}} + k_{n}^{2}f_{n} = uf$$

$$\frac{d^{2}\bar{f}_{n}}{dx^{2}} + k_{n}^{2}\bar{f}_{n} = u\bar{f}$$
(1.4)

¿From (1.4) one gets

$$\frac{d}{d!}\{\dot{f}_n, \bar{f}_n\} = (\bar{k}_n^2 - k_n^2)|f_n|^2 \tag{1.5}$$

after integrating by x one obtains

$$\bar{k}_n^2 = k_n^2$$

Apparently $\{f_n, \bar{f}_n\} = 0$, and eigenfunction F can be made real. Let us introduce Jost functions Ψ, Φ -solutions of equation (1.1), defined by boundary conditions

$$\Psi \to e^{ikx} \qquad \Phi \to e^{-ikx}
x \to +\infty \qquad x \to -\infty$$
(1.6)

Jost functions satisfy certain integral equations. One can present Ψ in a form

$$\Psi=c_1e^{ikx}+c_2e^{-ikx}$$
 ((K), (2 CK) — functions

with additional condition

$$c_1'e^{ikx} + c_2'e^{-ikx} = 0 (1.7)$$

Hence

$$\Psi' = ik(c_1 e^{ikx} - c_2 e^{-ikx})$$

$$\Psi'' + k^2 \Psi = ik(c'_1 e^{ikx} - c'_2 e^{-ikx}) = u\Psi$$
(1.8)

Combining (1.7), (1.8), one gets

$$c'_1 = \frac{1}{2ik} u \Psi e^{-ikx}$$
 $c'_2 = -\frac{1}{2ik} u \Psi e^{ikx}$ (1.9)

Integrating equation (1.9) we take into account boundary conditions

$$c_{1} = 1 - \frac{1}{2ik} \int_{x}^{\infty} u\Psi e^{-iky} dy$$

$$c_{2} = \frac{1}{2ik} \int_{x}^{\infty} u\Psi e^{iky} dy$$
(1.10)

One can introduce a new function $A = \Psi e^{-ikx} = c_1 + c_2 e^{-2ikx}$. From (1.10 we conclude that $\bf 8$ satisfies the integral equation

$$\mathbf{k}(x,k) = 1 - \frac{1}{2ik} \int_{x}^{\infty} u(y)(1 - e^{2ik(y-x)}) A(k,y) dy$$
 (1.11)

The same operation can be performed with function Φ . Now

$$c_1 = \frac{1}{2ik} \int_x^\infty u \Phi e^{-iky} dy$$

$$c_2 = 1 - \frac{1}{2ik} \int_{-\infty}^x u \Phi e^{iky} dy.$$
(1.12)

Let us denote $B = \Phi e^{ikx}$. This function satisfies the integral equation

$$\mathbf{R}(x,k) = 1 - \frac{1}{2ik} \int_{x}^{\infty} u(1 - e^{2ik(x-y)}) B(k,y) dy$$
 (1.13)

Suppose now that $k = \xi + i\eta$, $\eta > 0$

$$|e^{2ik(y-x)}| = e^{-2\eta(y-x)}$$

In (1.2) y > x and this exponent tends to zero as $y \to \infty$. In (1.13) $|e^{2ik(x-y)}| = e^{-2\eta(x-y)}$. As far as y < x, this exponent also tends to zero $\eta \to \infty$.

Hence both functions A, B could be analytically continued to the upperplane. They have these asymptotic expansions

and

$$\Psi \to e^{ikx} \left(1 - \frac{1}{2ik} \int_x^\infty u(y) dy \right) \qquad \Phi \to e^{-ikx} \left(1 - \frac{1}{2ik} \int_{-\infty}^x u(y) dy \right)$$

Let $k = i \aleph_n$. Then

$$\begin{array}{ccccc} \Psi|_{k=i\aleph_n} & \to & e^{-\aleph_n x} & & x \to \infty \\ \Phi|_{k=i\aleph_n} & \to & e^{\aleph_n x} & & x - \to \infty \end{array}$$

They present the same eigenfunction f_n and can differ only on some factor. Suppose that f_n is designed by asymptotic

$$f_n \rightarrow e^{\aleph_n x} \quad x \rightarrow -\infty$$

 $f_n \rightarrow b_n e^{\aleph_n x} \quad x \rightarrow \infty$ (1.15)

Hence

$$f_n = \Phi|_{k=i\aleph_n} = b_n \Phi|_{k=i\aleph_n}. \tag{1.16}$$

In this point Ψ and Φ are proportional to each other.

 $\bar{\Psi}(k,x) = \Psi(-k,x)$ and $\bar{\Phi}(k,x) = \Phi(-k,x)$ also are solutions of equation (1.1). Apparently, they are analytic in lower half-plane. Solutions $\Psi, \bar{\Psi}$ comprise a fundamental system. Then, one can put

$$\Phi(k,x) = a(k)\Psi(-k,x) + b(k)\Psi(k,x)$$

$$Phi(-k,x) = b(-k)\Psi(-k,x) + a(-k)\Psi(k,x)$$
(1.17)

Apparently

$$a(-k) = \bar{a}(k)$$
 $b(-k) = \bar{k}(k)$ (1.18)

Note that

$$\{\Psi(k), \Psi(-k)\} = 2ik \qquad \{\Phi(k), \Phi(-k)\} = -2ik$$
 (1.19)

Calculating $\{\Phi(k), \Phi(-k)\}$ by the use of (1.17) one finds

$$|a(k)|^2 - |b(k)|^2 = 1.$$
 (1.20)

We will call $\begin{vmatrix} a & b \\ \bar{b} & \bar{a} \end{vmatrix}$ monodromy matrix, according to (1.20) this matrix is unimodular.

Now from (1.17), (1.19) we get

$$a(k) = \frac{1}{2ik} \{ \Psi, \Phi \} \qquad \mathbf{6}(k) = \frac{1}{2ik} \{ \overline{\Psi}, \Phi \}$$
 (1.21)

Hence a(k) is analytic in the upper half-plane. By plugging (1.16) into (1.21) one gets

$$a \to \frac{1}{2ik} \left\{ ik \left(\left(1 - \frac{1}{2ik} \int_{-\infty}^{x} u(y) dy + \dots \right) + \left(1 - \frac{1}{2ik} \int_{x}^{\infty} u(y) dy \right) \right\}$$
$$= 1 - \frac{1}{4k} \int_{-\infty}^{\infty} u(y) dy + \dots (1.22)$$

The scattering amplitude $\mathcal{L}(k)$ is defined as follows

$$\mathfrak{C}(k) = \frac{a(k)}{b(k)}.$$

Also we define $d(k) = \frac{1}{a(k)}$ -amplitude of penetration through the potential barrier. From (1.20) we obtain

$$|\mathbf{\ell}(k)|^2 + |d(k)|^2 = 1 \tag{1.23}$$

This is the "unitary condition": By definition the potential u(x) is reflectionless if $r(k) \equiv 0$.

In this case a(k) can be found explicitly from the conditions |a(k)|=1 for real $k,\ a(-k)=\bar{a}(k)$ $a(k)\to 1$ $k\to \infty;\ a(k)$ -analytic in the upper half-plane.

If a(k) has no zeros in upper half-plane then $a(k) \equiv 1$. In virtue of condition $a(-k) = \bar{a}(k)$ all zeros are posed on the imaginary axis. Apparently they are exact eigenvalues \aleph_n . a(k) can be presented as the product

$$a(k) = \prod_{m=1}^{n} \frac{k - i\aleph_n}{k + i\aleph_n}$$
 (1.24)

For reflectionless potential function

$$Y(\mathbf{k}, x) = \mathbf{k}(k, x) = \mathbf{k}(-k, x)$$
 (1.25)