Lecture 1@

Scattering in the Schrodinger
equation

We start with equation:
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,a?\li%—klll—u(x)lll —o0< k<o (1.1)

u(z)-real function satisfying the condition
| @+ iabu(e)lds < oo (12)

k = ky is eigenvalue if the solution f, of equation (1.1) tends to zero at
|z| — oo. It is well known that this solution is unique. Indeed, if ¥y, ¥,y are
two solutions of (1.1) then

{lIfl, \Ifg} =const = C (13)

Here {‘I’l, qu} = \Iflx‘Ifz - PSiQx‘I’l -wronskian of functions ‘1’1, \1’2. If \Ill, \P2—
eigenfunctions, they tend to zero at |z| — oo, hence C = 0 and Uy, Uy are
proportional to each other.

Eigenvalue k, must be pure imaginary. Indeed, if k, is complex
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72 +Ef, = uf
2f .- B (1.4)
Sz Thnfa = uf

(From (1.4) one gets
des 7 72 _ 12 2
Eifn’ f‘"'} = (kn - k’n)lf’fl, (15)
after integrating by z one obtains
R =R

Apparently {f,, f.} = 0, and eigenfunction F can be made real. Let us
introduce Jost functions ¥, ®-solutions of equation (1.1), defined by bound-
ary conditions

ikx —ikx
V—oe ®—e (1.6)
x — 400 T — —00

Jost functions satisfy certain integral equations. One can present ¥ in a form

U= cleikx + C2€_ikx C 2 Ry — Guncliowms
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with additional condition

e 4 che™Re = 0 (1.7)
Hence
V' = ik(c;e™® — cyek®
U+ KU = ik(ce™® — dye ™) = u ¥ (1.8)
Combining (1.7), (1.8), one gets
1 . 1 ,

) T I —ikz S ikx 1.9
AT gt @ = —gpute (1.9)

Integrating equation (1.9) we take into account boundary conditions
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aq = 1-—— / uWe *dy
1 o (1.10)

= thy
Ca 5% | ule™dy

One can introduce a new function A = Ve = ¢; + c,e =%, From (1.10
we conclude that f satisfies the integral equation

Biok) = 1- o [Tu)a - o aepay

The same operation can be performed with function ®. Now

- ® —iky
c 2k |, u®e"¥dy
1 /= ' (1.12)
e = 1-— TA / ude*¥dy.
VA7 T NN

Let us denote B = ®e®**, This function satisfies the integral equation

Bk =1-s0 [ u(l— =N Bleydy (119

Suppose now that k =& +in, n >0

’ e%k(y—m), = ¢~ 2(y—2)

In (1.2) y > z and this exponent tends to zero as y — co. In (1.13)
2%V = e~21==¥). As far as y < =, this exponent also tends to zero
n — 00.

Hence both functions A, B could be analytically continued to the upper-
plane. They have these asymptotic expansions

B - 1-— [ udy

2k J,
A . 1 [® )i k—oo Imk>0 (1.14)
- l=o uly)ay
2k J_



and

. 1 foo . 1
ik . —tkz —_—
e (1 5 /,.- u(y)dy) d—e (1 o /
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Let k =R,,. Then

Npx

Ulpmin, — € T — 00

Nnz

©|k=mn — € T— — 00

u(y)dy>

They present the same eigenfunction £, and can differ only on some factor.

Suppose that f, is designed by asymptotic

fo — €n° T — —00

fao — bpef® T — 00

Hence
Jr = ®li=in, = b, ®|r=in,,.

In this point ¥ and & are proportional to each other.

V(k,z) = U(—k,z) and B(k, z) = &(—k, x) also are solutions of equation

(9]
1

(1.1). Apparently, they are analytic in lower half-plane. Solutions U,

comprise a fundamental system. Then, one can put
®(k,z) = a(k)U(—k, z) + b(k)U(k, z)
Phi(—k,z) = b(—k)¥(—k, z) + a(—k) ¥ (k, z)

Apparently
a(—k) = a(k) b(—k) = k(k)
Note that

(U(R), W(=R)} =2k {B(k), B(—F)} = —2ik
Calculating {®(k), ®(—k)} by the use of (1.17) one finds
ja(B)i? — ib(k)[* = 1.

4

(1.18)

(1.19)

(1.20)
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We will call 7

unimodular.
Now from (1.17), (1.19) we get

2 }monodromy matrix, according to (1.20) this matrix is

o(k) = 5-(0,9) (k) = (T 2) (1.21)

Hence a(k) is analytic in the upper half-plane. By plugging (1.16) into
(1.21) one gets

a— ﬁ{ik((l—ﬁ»/_iu(y)dy—i—...) + (l—ﬁwmuw)dy)}

kS N v = / N /7

{e o]

1
=1—-— dy+..{1.22
- |y (122)

The scattering amplitude €) is defined as follows
a(k)
k) = 85
&) =5

Also we define d(k) = a—(lks-amplitude of penetration through the potential
barrier. From (1.20) we obtain

|etk) | + |d(k)[? = 1 (1.23)

This is the “unitary condition”: By definition the potential u(zx) is reflec-
tionless if r(k) = 0.

in this case a(k) can be found explicitly from the conditions |a{k)| = 1
for real k, a(—k) = a(k) a(k) - 1 k — oo; a(k)-analytic in the upper
half-plane.

If a(k) has no zeros in upper half-plane then a(k) = 1. In virtue of con-
dition a(—k) = @(k) all zeros are posed on the imaginary axis. Apparently
they are exact eigenvalues R,.. a(k) can be presented as the product

(1.24)



For reflectionless potential function

Yehgn = ’%f,;)””) = B—k,2) (1.25)



