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Abstract

A system of one-dimensional equations describing media with two types of interacting waves is considered. This system can
be viewed as an alternative to the model introduced by Majda, McLaughlin and Tabak in 1997 for assessing the validity of weak
turbulence theory. The predicted Kolmogorov solutions are the same in both models. The main difference between both models
is that coherent structures such as wave collapses and quasisolitons cannot develop in the present model. As shown recently
these coherents structures can influence the weakly turbulent regime. It is shown here that in the absence of coherent structures
weak turbulence spectra can be clearly observed numerically. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Weak turbulence theory is an efficient tool for de-
scribing turbulence in systems dominated by resonant
interactions between small-amplitude waves. One of
the key ingredients to the theory of weak wave tur-
bulence is the so-called Kolmogorov spectrum [1].
Kolmogorov weak-turbulence spectra have been ob-
served in several physical systems (for example, in a
sea of wind-driven, weakly coupled, dispersive water
waves). We believe that Kolmogorov weak-turbulence
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spectra are a useful theoretical tool for explaining var-
ious complex wave phenomena observed in nature.

Only a few attempts have been made to compare
predictions of weak turbulence theory with numeri-
cal results. One can mention the results of Pushkarev
and Zakharov [2] who numerically solved the three-
dimensional equations for capillary water waves and
observed a power-law spectrum close to that derived
by Zakharov and Filonenko [3]. Majda, McLaughlin
and Tabak [4] introduced a model, the so-called MMT
model, for assessing numerically the validity of weak
turbulence theory. Since their results indicated a fail-
ure of the predictions of weak turbulence theory, more
computations have been carried out recently to get a
better understanding of wave turbulence in the MMT
model [5–7]. The present understanding is that co-
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herent structures can strongly affect weak turbulence.
These coherent structures essentially are wave col-
lapses and quasisolitons. Wave collapses in the form
of sporadic localized events represent a strongly non-
linear mechanism of energy transfer towards small
scales. Quasisolitons or envelope solitons denote ap-
proximate solutions of the MMT model which tend to
classical solitons in the limit of a narrowbanded spec-
trum. The presence of such quasisolitons may explain
the deviation from weak turbulence leading to the ap-
pearance of a steeper spectrum (the so-called MMT
spectrum) in some cases [6,7]. Recently, Biven et al.
[8] addressed the problem of breakdown of wave tur-
bulence by intermittent events associated with nonlin-
ear coherent structures.

In the present Letter we consider a model which is
quite similar to the MMT model. However, coherent
structures cannot develop. Our model takes the form
of a system of equations describing the interactions of
two types of waves. This is a fairly widespread case
which includes, for example, the interaction of elec-
trons with photons or the interaction of electromag-
netic waves with Langmuir waves [1,9]. The main con-
clusion of this Letter is that numerical results based
on the present model are in agreement with the pre-
dictions of weak turbulence theory. Agreement be-
tween numerical simulations and weak turbulence the-
ory was also recently obtained by Zakharov et al. [10],
who examined a modified version of the MMT model
that allows for “one to three” wave interactions.

Of course, it will be necessary in the future to per-
form numerical computations on the full equations de-
scribing the physical phenomena of interest. However,
we believe that a lot of information can be obtained
from the solution of simplified models. Since the the-
ory of weak turbulence is quite general, its main state-
ments can be tested with simple models, for which nu-
merical simulations can be performed more easily.

2. Model equations and Kolmogorov spectra

We consider the system of equations proposed in
[7],

i
∂ak

∂t
= ωkak +

∫
T123ka1b2b

∗
3

× δ(k1 + k2 − k3 − k) dk1dk2dk3,

i
∂bk

∂t
= sωkbk +

∫
T123kb1a2a

∗
3

(1)× δ(k1 + k2 − k3 − k) dk1dk2dk3,

whereak, bk denote the Fourier components of two
types of interacting wave fields and asterisk stands
for complex conjugation. Like the MMT model, this
model is determined by the linear dispersion rela-
tion ωk = |k|α and the interaction coefficientT123k =
|k1k2k3k|β/4. Thus ωk , sωk and T123k are homoge-
neous functions of their arguments. The three parame-
terss, α andβ are real with the restrictions,α > 0. If
we setα = 2 andβ = 0, Eqs. (1) correspond to cou-
pled nonlinear Schrödinger equations.

The system possesses two important conserved
quantities, the positive definite HamiltonianH , which
we split into its linear partHL and its nonlinear part
HNL,

H = HL + HNL

=
∫

ωk

(|ak|2 + s|bk|2
)
dk

+
∫

T123ka1b2b
∗
3a

∗
k δ(k1 + k2 − k3 − k)

× dk1dk2dk3dk,

and the total wave action (or number of particles)

N =
∫ (|ak|2 + |bk|2

)
dk.

Note that both individual wave actions
∫ |ak|2dk and∫ |bk|2dk are conserved in the system.

Eqs. (1) describe four-wave resonant interactions
satisfying

k1 + k2 = k3 + k,

(2)ω1 + sω2 = sω3 + ωk.

It is well known that whens = 1 conditions (2) have
nontrivial solutions only ifα < 1. The cases = 1 and
α = 1/2, which mimics gravity waves in deep water,
was treated in some recent studies [4–7]. In particu-
lar, Zakharov et al. [7] showed that the MMT model
with α < 1 exhibits coherent structures which strongly
affect the weakly turbulent regime. Here accounting
for s �= 1 allows the resonance conditions (2) to be
satisfied for anyα. If α = 2, we can solve explicitly
Eqs. (2) to obtain

k3 = k1 − 2(k1 − sk2)

1+ s
,
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(3)k = k2 + 2(k1 − sk2)

1+ s
.

It is clear that Eqs. (3) withs = 1 give the trivial solu-
tion k3 = k2, k = k1. As a general rule, for a given
α, nontrivial families of resonant quartets obeying
Eqs. (2) can be found for all values ofs �= 1.

In the framework of weak turbulence theory, we are
interested in the evolution of the two-point correlation
functions〈
aka

∗
k′
〉 = na

kδ(k − k′) and
〈
bkb

∗
k′
〉 = nb

kδ(k − k′),

where 〈·〉 represents ensemble averaging. Under the
assumptions of random phases and quasi-Gaussianity,
it is then possible to write a system of kinetic equations
for na

k andnb
k as

∂na
k

∂t
= 2π

∫
|T123k|2Uab

123kδ(ω1 + sω2 − sω3 − ωk)

(4)× δ(k1 + k2 − k3 − k) dk1dk2dk3,

∂nb
k

∂t
= 2π

∫
|T123k|2Uba

123kδ(sω1 + ω2 − ω3 − sωk)

(5)× δ(k1 + k2 − k3 − k) dk1dk2dk3,

with

Uab
123k = na

1n
b
2n

b
3 + na

1n
b
2n

a
k − na

1n
b
3n

a
k − nb

2n
b
3n

a
k .

The stationary power-law solutions of Eqs. (4), (5)
can be found explicitly. To do so, let us examine
Eq. (4) only since the problem is similar for Eq. (5) by
permutingna

k andnb
k as well asωk andsωk . Looking

for solutions of the formna
k ∝ ω

−γ

k , nb
k ∝ (sωk)

−γ

and applying Zakharov’s conformal transformations,
the kinetic equation (4) becomes

(6)
∂N a

ω

∂t
∝ ω

−y−1
k I a

sαβγ ,

whereN a
ω = na

k dk/dωk and

Ia
sαβγ =

∫
∆

S123
[
1+ (sξ3)

γ − (sξ2)
γ − ξ

γ

1

]
× δ(1+ sξ3 − sξ2 − ξ1)

× δ
(
1+ ξ

1/α
3 − ξ

1/α
2 − ξ

1/α
1

)

(7)

× [
1+ (sξ3)

y − (sξ2)
y − ξ

y

1

]
dξ1 dξ2dξ3,

with

∆ = {0< ξ1 < 1, 0< sξ2 < 1, ξ1 + sξ2 > 1},
S123= 2π

α4s2γ (ξ1ξ2ξ3)
(β/2+1)/α−1−γ ,

and

y = 3γ + 1− 2β + 3

α
.

The nondimensionalized integralIa
sαβγ in Eq. (6) re-

sults from the change of variablesωj → ωkξj (j = 1,
2,3).

Thermodynamic equilibrium solutions (γ = 0,1)
given by

(8)n
a,b
k = const and n

a,b
k ∝ ω−1

k

are obvious. In addition, there exist Kolmogorov-type
solutions (y = 0,1)

n
a,b
k ∝ ω

(−2β/3−1+α/3)/α
k and

(9)n
a,b
k ∝ ω

−(2β/3+1)/α
k ,

which correspond to a finite flux of wave actionQ and
energyP , respectively. We point out that Eqs. (8), (9)
are also steady solutions of Eq. (5) and they are identi-
cal to those derived from the MMT model [4]. The fact
that the kinetic equation depends on the parameters

implies that the fluxes and the Kolmogorov constants
also depend ons (see below). However, there is no
s-dependence on the Kolmogorov exponents because
of the property of scale invariance. As found in [7], the
criterion for appearance of the Kolmogorov spectra (9)
is

(10)β < −3

2
or β > 2α − 3

2
.

This means physically that a flux of wave action to-
wards large scales (inverse cascade withQ < 0) and
a flux of energy towards small scales (direct cascade
with P > 0) should occur in the system. The full ex-
pressions of Eq. (9) can be obtained from dimensional
analysis yielding

na
k = ca1Q

1/3
a ω

(−2β/3−1+α/3)/α
k ,

(11)nb
k = cb1Q

1/3
b (sωk)

(−2β/3−1+α/3)/α,

and

na
k = ca2P

1/3
a ω

−(2β/3+1)/α
k ,

(12)nb
k = cb2P

1/3
b (sωk)

−(2β/3+1)/α,
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where

c
a,b
1 =

(
−∂I

a,b
sαβγ

∂y

∣∣∣∣
y=0

)−1/3

,

(13)c
a,b
2 =

(
∂I

a,b
sαβγ

∂y

∣∣∣∣
y=1

)−1/3

denote the dimensionless Kolmogorov constants.
These can be computed directly by using integral (7)
and its analogue for∂N b

ω/∂t .
In the numerical computations, we will fixα =

3/2> 1 in order to prevent the emergence of coherent
structures such as wave collapses and quasisolitons
revealed in [7]. Our goal is to check the validity of the
Kolmogorov spectra which are relevant in several real
wave media as already said in the introduction [1]. We
will restrict our study to solutions (12) associated with
the direct cascade.

3. Numerical results

Numerical experiments were carried out to integrate
Eqs. (1) by use of a pseudospectral code with periodic
boundary conditions. The method includes a fourth-
order Runge–Kutta scheme in combination with an
integrating factor technique which permits efficient
computations over long times [4,7]. Resolution with
up to 2048 de-aliased modes in a domain of length 2π

is achieved here (kmax = 1024). To generate weakly
turbulent regimes, source terms of the form

i

(
f a
k

f b
k

)
eiθk − i

[(
νa−
νb−

)(
k − k−

d

)2 +
(
νa+
νb+

)(
k − k+

d

)2

]

(14)×
(
ak

bk

)

were added to both right-hand sides of Eqs. (1). The
first term in Eq. (14) denotes a white-noise forcing
where 0� θk < 2π is an uniformly distributed random
number varying in time. The term in square brackets
consists of a wave action sink at large scales and an
energy sink at small scales. The random feature of the
forcing makes it uncorrelated in time with the wave
field. Consequently, it is easier to control the input en-
ergy with a random forcing than with a deterministic
forcing. For the results presented below, the forcing

region is located at small wave numbers, i.e.,

f
a,b
k =

{
6,3 if 8 � k � 12,
0 otherwise.

Parameters of the sinks are

ν
a,b
− =

{
16,0.8 if k � k−

d (k−
d = 5),

0 otherwise,

and

ν
a,b
+ =

{
10−2,7× 10−4 if k � k+

d (k+
d = 550),

0 otherwise.

Using this kind of selective dissipation ensures large
enough inertial ranges at intermediate scales where so-
lutions can develop under the negligible influence of
damping. According to criterion (10), we focused on
β = 2 ands = 1/10 as a typical case for testing weak
turbulence predictions. Simulations are run from low-
level initial data until a quasisteady state is reached
and then averaging is performed over a sufficiently
long time to compute the spectra. The time step, set
equal to't = 2 × 10−5, has to resolve accurately
the fastest harmonicsτ ∼ 1/ωmax of the medium or
at least those from the inertial range. Time integra-
tion with such a small time step leads to a compu-
tationally time-consuming procedure despite the one-
dimensionality of the problem. This explains why we
choseα = 3/2 rather than a greater integer value (e.g.,
α = 2) as well ass = 1/10 rather than a values > 1.
Otherwise the constraint on't would be more severe.
There isa priori no special requirement in the choice
of the value ofs, excepts �= 1.

Figs. 1 and 2 show the temporal evolution of the
wave actionN and the quadratic energyHL over the
window 80� t � 100. At this stage, the stationary
regime is clearly established since the wave action and
the quadratic energy fluctuate around some mean val-
uesN � 0.5 andHL � 5.3. Typically, the time interval
for both the whole computation and the time averag-
ing must exceed significantly the longest linear period.
In order to monitor the level of turbulence, we define
the average nonlinearityε as the ratio of the nonlinear
part to the linear part of the Hamiltonian, i.e.,

ε = HNL

HL
.

As in [2,7], this quantity provides a relatively good
estimate of the level of nonlinearity once the system
reaches the steady state. We can see in Fig. 3 that
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Fig. 1.s = 1/10,α = 3/2, β = 2. Evolution of wave actionN vs. time in the stationary state.

Fig. 2.s = 1/10,α = 3/2, β = 2. Evolution of quadratic energyHL vs. time in the stationary state.

the average nonlinearity fluctuates around some mean
valueε � 0.14, which indicates that the condition of
weak nonlinearity holds in our experiments. However,
it should be emphasized thatε could not be imposed
too small (by decreasing the forcing) otherwise the dif-
ferent modes would not be excited enough to generate
an effective flux of energy. This problem is particularly
important in numerics due to the discretization which
restricts the possibilities for four-wave resonances.
Since the effects of nonlinearity are assumed to be
small in weak turbulence, it is sufficient to consider
only the quantityHL which contains the main part of
the energy. We deduce the conservation of the total

Hamiltonian from the conservation ofHL and ε, as
illustrated in Figs. 2 and 3 becauseH = HL(1+ ε).

Fig. 4 displays the stationary isotropic spectran
a,b
k

realized in the present situation. By comparison, we
also plotted the predicted Kolmogorov solutions given
by Eq. (12). Forα = 3/2 andβ = 2, they read

(15)na
k = ca2P

1/3
a ω

−14/9
k = ca2P

1/3
a k−7/3,

and

nb
k = cb2P

1/3
b (sωk)

−14/9 = cb2P
1/3
b s−14/9k−7/3,

(16)s = 1/10,
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Fig. 3.s = 1/10,α = 3/2, β = 2. Evolution of average nonlinearityε vs. time in the stationary state.

Fig. 4. s = 1/10, α = 3/2, β = 2. Computed spectra (na
k

for the lower one andnb
k

for the upper one) and predicted Kolmogorov spectra

Ca,bk
−7/3 with Ca = ca2P

1/3
a andCb = cb2P

1/3
b

s−14/9 (dashed lines).

whereca2 = 0.094 andcb2 = 0.047 are numerically cal-
culated from Eq. (13). The mean fluxes of energyPa,b

in Eqs. (15) and (16) can be expressed as

Pa = 2
∫

k>k+
d

νa+
(
k − k+

d

)2
ωkn

a
k dk

and

Pb = 2
∫

k>k+
d

νb+
(
k − k+

d

)2
sωkn

b
k dk,

with k+
d the cutoff of ultraviolet dissipation [1,7]. Then

it is straightforward to get their valuesPa = 0.86 and

Pb = 0.56 from simulations. We can observe in Fig. 4
that for both wave fields the spectra are well approx-
imated by the Kolmogorov power-laws over a wide
range of scales (say 20< k < 300). Here the agree-
ment between theory and numerics is found with re-
spect to both the slope and the level of the spectra.

4. Conclusion

We have studied a simplified one-dimensional mod-
el describing media with two types of interacting
waves. The regime of parameters has been chosen such
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that weak turbulence theory can be applied correctly
and coherent structures cannot develop. This way we
avoid any interference between weak wave turbulence
and coherent structures. Our numerical results show
the appearance of a pure weak turbulence state with
the formation of a complete Kolmogorov spectrum.
This suggests the general relevance of weak turbulence
even in one-dimensional systems. In the future it will
be of interest to extend the present work to higher di-
mensions by still considering simplified models such
as the present one, and to perform computations on the
full equations describing the physical phenomena of
interest. Recall that Pushkarev and Zakharov [2] suc-
cessfully observed weak turbulence for capillary wa-
ter waves in three dimensions. However, their numeri-
cal simulations based on the truncated basic equations
were very time-consuming and the Kolmogorov spec-
trum that they measured extended only over a small
range of scales.
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