Interesting Problems
Mathematics 425A: Analysis
August 28, 2006

1. Write \(\frac{1}{717} \) as a repeating decimal.

2. Suppose \(c > 0 \) is a real number that can be rapidly approximated by rational numbers \(s_n \). This means that \(c = s_n + r_n \) where for each \(n \) the number \(s_n \) is rational, \(n!s_n \) is integer, the remainder \(r_n > 0 \), and where \(\lim_{n \to \infty} n!r_n = 0 \). Prove that \(c \) is irrational.

3. Let \(s_n, n = 1, 2, 3, \ldots \) be a sequence of real numbers. Each strictly increasing sequence \(N_k, k = 1, 2, 3, \ldots \) of natural numbers defines a corresponding subsequence \(s_{N_k}, k = 1, 2, 3 \) of real numbers.

Is there a sequence \(s_n, n = 1, 2, 3, \ldots \) of real numbers such that for every real number \(y \) there is a subsequence \(s_{N_k}, k = 1, 2, 3, \ldots \) that converges to \(y \)? Either give an example, or prove that no such example exists.