1. Matrices and vectors

- An \(m \times n \) matrix is an array with \(m \) rows and \(n \) columns. It is typically written in the form

\[
A = [a_{ij}] = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix},
\]

where \(i \) is the row index and \(j \) is the column index.

- A column vector is an \(m \times 1 \) matrix. Similarly, a row vector is a \(1 \times n \) matrix.

- The entries \(a_{ij} \) of a matrix \(A \) may be real or complex.
Matrices and vectors (continued)

- **Examples:**
 - $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is a 2×2 square matrix with **real** entries.

 - $u = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ is a column vector of A.

 - $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 3-7i \end{bmatrix}$ is a 3×3 diagonal matrix, with complex entries.

 - An $n \times n$ diagonal matrix whose entries are all ones is called the $n \times n$ identity matrix.

 - $C = \begin{bmatrix} 1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0 \end{bmatrix}$ is a 2×4 matrix with **real** entries.

Matrix addition and scalar multiplication

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two $m \times n$ matrices, and let c be a scalar.

- The matrices A and B are **equal** if and only if they have the same entries,
 $A = B \iff a_{ij} = b_{ij}, \text{ for all } i, j, \ 1 \leq i \leq m, \ 1 \leq j \leq n.$

- The **sum** of A and B is the $m \times n$ matrix obtained by adding the entries of A to those of B,
 $A + B = [a_{ij} + b_{ij}].$

- The **product** of A with the scalar c is the $m \times n$ matrix obtained by multiplying the entries of A by c,
 $cA = [c \cdot a_{ij}].$
2. Matrix multiplication

Let \(A = [a_{ij}] \) be an \(m \times n \) matrix and \(B = [b_{ij}] \) be an \(n \times p \) matrix. The product \(C = AB \) of \(A \) and \(B \) is an \(m \times p \) matrix whose entries are obtained by multiplying each row of \(A \) with each column of \(B \) as follows:

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.
\]

Examples: Let \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) and \(C = \begin{bmatrix} 1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0 \end{bmatrix} \).

- Is the product \(AC \) defined? If so, evaluate it.
- Same question with the product \(CA \).
- What is the product of \(A \) with the third column vector of \(C \)?

Chapters 7-8: Linear Algebra

Matrix multiplication (continued)

More examples:

- Consider the system of equations

\[
\begin{align*}
3x_1 + 2x_2 - x_3 &= 4 \\
x_2 - 7x_3 &= 0 \\
-x_1 + 4x_2 - 6x_3 &= -10
\end{align*}
\]

Write this system in the form \(AX = Y \), where \(A \) is a matrix and \(X \) and \(Y \) are two column vectors.

- Let

\[
A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}.
\]

Calculate the products \(AB \) and \(BA \).
3. Rules for matrix addition and multiplication

- The rules for matrix addition and multiplication by a scalar are the same as the rules for addition and multiplication of real or complex numbers.

- In particular, if A and B are matrices and c_1 and c_2 are scalars, then

\[
A + B = B + A
\]
\[
(A + B) + C = A + (B + C)
\]
\[
c_1 (A + B) = c_1 A + c_1 B
\]
\[
(c_1 + c_2)A = c_1A + c_2A
\]
\[
c_1 (c_2 A) = (c_1 c_2)A
\]

whenever the above quantities make sense.

- The product of two matrices is associative and distributive, i.e.

\[
A(BC) = (AB)C = ABC
\]
\[
A(B + C) = AB + AC
\]
\[
(A + B)C = AC + BC.
\]

- However, the product of two matrices is not commutative. If A and B are two square matrices, we typically have

\[
AB \neq BA
\]

- For two square matrices A and B, the commutator of A and B is defined as

\[
[A, B] = AB - BA.
\]

In general, $[A, B] \neq 0$. If $[A, B] = 0$, one says that the matrices A and B commute.
4. Transposition

- The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^T obtained from A by switching its rows and columns, i.e.

$$A = [a_{ij}] \quad \text{then} \quad A^T = [a_{ji}].$$

- **Example:** Find the transpose of $C = \begin{bmatrix} 1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0 \end{bmatrix}$.

- **Some properties of transposition.** If A and B are matrices, and c is a scalar, then

$$ (A + B)^T = A^T + B^T \quad (cA)^T = cA^T \quad (AB)^T = B^T A^T \quad \left(A^T\right)^T = A,$$

whenever the above quantities make sense.

5. Linear independence

- A **linear combination** of the n vectors a_1, a_2, \ldots, a_n is an expression of the form

$$c_1 a_1 + c_2 a_2 + \cdots + c_n a_n,$$

where the c_i's are scalars.

- A set of vectors $\{a_1, a_2, \ldots, a_n\}$ is **linearly independent** if the only way of having a linear combination of these vectors equal to zero is by choosing all of the coefficients equal to zero. In other words, $\{a_1, a_2, \ldots, a_n\}$ is linearly independent if and only if

$$c_1 a_1 + c_2 a_2 + \cdots + c_n a_n = 0 \implies c_1 = c_2 = \cdots = c_n = 0.$$
6. Vector space

A real (or complex) vector space is a non-empty set \(V \) whose elements are called vectors, and which is equipped with two operations called vector addition and multiplication by a scalar.

The vector addition satisfies the following properties.

1. The sum of two vectors \(a \in V \) and \(b \in V \) is denoted by \(a + b \) and is an element of \(V \).
2. It is commutative: \(a + b = b + a \), for all \(a, b \in V \).
3. It is associative: \((a + b) + c = a + (b + c)\) for all \(a, b, c \in V \).
4. There exists a unique zero vector, denoted by 0, such that for every vector \(a \in V \), \(a + 0 = a \).
5. For each \(a \in V \), there exists a unique vector \((-a) \in V \) such that \(a + (-a) = 0 \).
Vector space (continued)

- The **multiplication by a scalar** satisfies the following properties.
 1. The multiplication of a vector \(a \in V \) by a scalar \(\alpha \in \mathbb{R} \) (or \(\alpha \in \mathbb{C} \)) is denoted by \(\alpha a \) and is an element of \(V \).
 2. Multiplication by a scalar is **distributive**:
 \[
 \alpha (a + b) = \alpha a + \alpha b, \quad (\alpha + \beta) a = \alpha a + \beta a,
 \]
 for all \(a, b \in V \) and \(\alpha, \beta \in \mathbb{R} \) (or \(\mathbb{C} \)).
 3. It is **associative**: \(\alpha (\beta a) = (\alpha \beta) a \) for all \(a \in V \) and \(\alpha, \beta \in \mathbb{R} \) (or \(\mathbb{C} \)).
 4. Multiplying a vector by 1 gives back that vector, i.e.
 \[
 1 a = a,
 \]
 for all \(a \in V \).

Bases and dimension

- The **span** of set of vectors \(U = \{a_1, a_2, \cdots, a_n\} \) is the set of all linear combinations of vectors in \(U \). It is denoted by
 \[
 \text{Span}\{a_1, a_2, \cdots, a_n\} \text{ or Span}(U)
 \]
 and is a **subspace** of \(V \).
- A **basis** \(B \) of a subspace \(S \) of \(V \) is a set of vectors of \(S \) such that
 1. \(\text{Span}(B) = S \);
 2. \(B \) is a linearly independent set.
- **Theorem**: If a basis \(B \) of a subspace \(S \) of \(V \) has \(n \) vectors, then all other bases of \(S \) have exactly \(n \) vectors.
- The **dimension** of a vector space \(V \) (or of a subspace \(S \) of \(V \)) spanned by a finite number of vectors is the number of vectors in any of its bases.
7. Rank

- The **row space** of an \(m \times n \) matrix \(A \) is the span of the row vectors of \(A \). If \(A \) has real entries, the row space of \(A \) is a subspace of \(\mathbb{R}^n \).

- Similarly, the **column space** of \(A \) is the span of the column vectors of \(A \), and is a subspace of \(\mathbb{R}^m \).

- The **rank** of a matrix \(A \) is the dimension of its column space.

- **Theorem**: The dimensions of the row and column spaces of a matrix \(A \) are the same. They are equal to the rank of \(A \).

- **Example**: Check that the row and column spaces of
 \[
 C = \begin{bmatrix}
 1 & 2 & 3 & 10 \\
 1 & 6 & -8 & 0
 \end{bmatrix}
 \]
 are vector subspaces, and find their dimension.

The rank theorem

- The **null space** of an \(m \times n \) matrix \(A \), \(\mathcal{N}(A) \) is the set of vectors \(u \) such that \(Au = 0 \). If \(A \) has real entries, then \(\mathcal{N}(A) \) is a subspace of \(\mathbb{R}^n \).

- The **rank theorem** states that if \(A \) is an \(m \times n \) matrix, then

 \[
 \text{rank}(A) + \dim(\mathcal{N}(A)) = n.
 \]

- **Example**: Find the rank and the null space of the matrix
 \[
 C = \begin{bmatrix}
 1 & 2 & 3 & 10 \\
 1 & 6 & -8 & 0
 \end{bmatrix}
 \]
 Check that the rank theorem applies.