Chapters 7-8: Linear Algebra
Sections 7.5, 7.8 & 8.1
1. Linear systems of equations

- A **linear system** of equations of the form

 \[
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
 \]

 can be written in matrix form as \(AX = B \), where

 \[
 A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
 \end{bmatrix}, \quad
 X = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
 \end{bmatrix}, \quad
 B = \begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
 \end{bmatrix}
 \]
Solution(s) of a linear system of equations

Given a matrix A and a vector B, a solution of the system $AX = B$ is a vector X which satisfies the equation $AX = B$.

If B is not in the column space of A, then the system $AX = B$ has no solution. One says that the system is not consistent. In the statements below, we assume that the system $AX = B$ is consistent.

If the null space of A is non-trivial, then the system $AX = B$ has more than one solution.

The system $AX = B$ has a unique solution provided $\dim(\mathcal{N}(A)) = 0$.

Since, by the rank theorem, $\text{rank}(A) + \dim(\mathcal{N}(A)) = n$ (recall that n is the number of columns of A), the system $AX = B$ has a unique solution if and only if $\text{rank}(A) = n$.
A linear system of the form \(AX = 0 \) is said to be homogeneous.

Solutions of \(AX = 0 \) are vectors in the null space of \(A \).

If we know one solution \(X_0 \) to \(AX = B \), then all solutions to \(AX = B \) are of the form

\[
X = X_0 + X_h
\]

where \(X_h \) is a solution to the associated homogeneous equation \(AX = 0 \).

In other words, the general solution to the linear system \(AX = B \), if it exists, can be written as the sum of a particular solution \(X_0 \) to this system, plus the general solution of the associated homogeneous system.
2. Inverse of a matrix

- If A is a square $n \times n$ matrix, its inverse, if it exists, is the matrix, denoted by A^{-1}, such that
 \[AA^{-1} = A^{-1} A = I_n, \]
 where I_n is the $n \times n$ identity matrix.

- A square matrix A is said to be singular if its inverse does not exist. Similarly, we say that A is non-singular or invertible if A has an inverse.

- The inverse of a square matrix $A = [a_{ij}]$ is given by
 \[A^{-1} = \frac{1}{\det(A)} [C_{ij}]^T, \]
 where $\det(A)$ is the determinant of A and C_{ij} is the matrix of cofactors of A.

Chapters 7-8: Linear Algebra
The determinant of a square $n \times n$ matrix $A = [a_{ij}]$ is the scalar

$$\text{det}(A) = \sum_{i=1}^{n} a_{ij} C_{ij} = \sum_{j=1}^{n} a_{ij} C_{ij}$$

where the cofactor C_{ij} is given by

$$C_{ij} = (-1)^{i+j} M_{ij},$$

and the minor M_{ij} is the determinant of the matrix obtained from A by “deleting” the i-th row and j-th column of A.

Example: Calculate the determinant of $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.
Properties of determinants

- If a determinant has a row or a column entirely made of zeros, then the determinant is equal to zero.

- The value of a determinant does not change if one replaces one row (resp. column) by itself plus a linear combination of other rows (resp. columns).

- If one interchanges 2 columns in a determinant, then the value of the determinant is multiplied by -1.

- If one multiplies a row (or a column) by a constant C, then the determinant is multiplied by C.

- If A is a square matrix, then A and A^T have the same determinant.
Properties of the inverse

- Since the inverse of a square matrix A is given by
 \[A^{-1} = \frac{1}{\det(A)} [C_{ij}]^T, \]
 we see that A is invertible if and only if $\det(A) \neq 0$.

- If A is an invertible 2×2 matrix,
 \[
 \begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{bmatrix},
 \]
 then
 \[A^{-1} = \frac{1}{\det(A)} \begin{bmatrix}
 a_{22} & -a_{12} \\
 -a_{21} & a_{11}
 \end{bmatrix}, \]
 and $\det(A) = a_{11}a_{22} - a_{21}a_{12}$.

- If A and B are invertible, then
 \[(AB)^{-1} = B^{-1}A^{-1} \quad \text{and} \quad (A^{-1})^{-1} = A.\]
Consider the following linear system of n equations with n unknowns,

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 \vdots \\
 a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n
\end{align*}
\]

This system can be also be written in matrix form as $AX = B$, where A is a square matrix.

If $\det(A) \neq 0$, then the above system has a unique solution X given by

\[X = A^{-1}B.\]
Linear systems of equations - summary

Consider the linear system $AX = B$ where A is an $m \times n$ matrix.

- The system may not be consistent, in which case it has no solution.

- To decide whether the system is consistent, check that B is in the column space of A.

- If the system is consistent, then
 - Either $\text{rank}(A) = n$ (which also means that $\text{dim}(\mathcal{N}(A)) = 0$), and the system has a unique solution.
 - Or $\text{rank}(A) < n$ (which also means that $\mathcal{N}(A)$ is non-trivial), and the system has an infinite number of solutions.
Consider the linear system $AX = B$ where A is an $m \times n$ matrix.

- If $m = n$ and the system is consistent, then
 - Either $\det(A) \neq 0$, in which case $\text{rank}(A) = n$, $\dim(\mathcal{N}(A)) = 0$, and the system has a unique solution;
 - Or $\det(A) = 0$, in which case $\dim(\mathcal{N}(A)) > 0$, $\text{rank}(A) < n$, and the system has an infinite number of solutions.

- Note that when $m = n$, having $\det(A) = 0$ means that the columns of A are linearly dependent.
- It also means that $\mathcal{N}(A)$ is non-trivial and that $\text{rank}(A) < n$.
Let A be a square $n \times n$ matrix. We say that X is an eigenvector of A with eigenvalue λ if

$$X \neq 0 \quad \text{and} \quad AX = \lambda X.$$

The above equation can be re-written as

$$(A - \lambda I_n)X = 0.$$

Since $X \neq 0$, this implies that $A - \lambda I_n$ is not invertible, i.e. that $\det(A - \lambda I_n) = 0$.

The eigenvalues of A are therefore found by solving the characteristic equation $\det(A - \lambda I_n) = 0$.

Chapters 7-8: Linear Algebra
The characteristic polynomial \(\det(A - \lambda I_n) \) is a polynomial of degree \(n \) in \(\lambda \). It has \(n \) complex roots, which are not necessarily distinct from one another.

If \(\lambda \) is a root of order \(k \) of the characteristic polynomial \(\det(A - \lambda I_n) \), we say that \(\lambda \) is an eigenvalue of \(A \) of algebraic multiplicity \(k \).

If \(A \) has real entries, then its characteristic polynomial has real coefficients. As a consequence, if \(\lambda \) is an eigenvalue of \(A \), so is \(\bar{\lambda} \).

If \(A \) is a \(2 \times 2 \) matrix, then its characteristic polynomial is of the form \(\lambda^2 - \lambda \text{Tr}(A) + \det(A) \), where the trace of \(A \), \(\text{Tr}(A) \), is the sum of the diagonal entries of \(A \).
Examples: Find the eigenvalues of the following matrices.

- \(A = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix} \).
- \(B = \begin{bmatrix} -1 & 9 \\ 0 & 5 \end{bmatrix} \).
- \(C = \begin{bmatrix} -13 & -36 \\ 6 & 17 \end{bmatrix} \).
- \(D = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4 & -1 \\ -1 & 1 & 2 \end{bmatrix} \).
Once an eigenvalue λ of A has been found, one can find an associated eigenvector, by solving the linear system

$$(A - \lambda I_n) X = 0.$$

Since $\mathcal{N}(A - \lambda I_n)$ is not trivial, there is an infinite number of solutions to the above equation. In particular, if X is an eigenvector of A with eigenvalue λ, so is αX, where $\alpha \in \mathbb{R}$ (or \mathbb{C}) and $\alpha \neq 0$.

The set of eigenvectors of A with eigenvalue λ, together with the zero vector, form a subspace of \mathbb{R}^n (or \mathbb{C}^n), E_λ, called the eigenspace of A corresponding to the eigenvalue λ.

The dimension of E_λ is called the geometric multiplicity of λ.

Chapters 7-8: Linear Algebra
Examples: Find the eigenvectors of the following matrices. Each time, give the algebraic and geometric multiplicities of the corresponding eigenvalues.

- $A = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$.
- $C = \begin{bmatrix} -13 & -36 \\ 6 & 17 \end{bmatrix}$.
- $D = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4 & -1 \\ -1 & 1 & 2 \end{bmatrix}$.
The geometric multiplicity m_λ of an eigenvalue λ is less than or equal to its algebraic multiplicity M_λ.

If $M_\lambda = 1$, then $m_\lambda = 1$.

If m_λ is not equal to M_λ, then one can find $M_\lambda - m_\lambda$ linearly independent generalized eigenvectors of A, by solving a sequence of equations of the form

$$ (A - \lambda I_n) U_{i+1} = U_i, \quad i \in \{1, \ldots, M_\lambda - m_\lambda\} $$

where $U_1 = X_\lambda$ is a genuine eigenvector of A with eigenvalue λ.

Chapters 7-8: Linear Algebra
Examples: Find the genuine and generalized eigenvectors of the following matrices

\[M = \begin{bmatrix}
4 & 1 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 4
\end{bmatrix}. \]

\[N = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}. \]

If \(A \) has \(k \) distinct eigenvalues and \(\mathcal{B}_1, \cdots, \mathcal{B}_k \) are bases of the corresponding generalized eigenspaces, then \(\{\mathcal{B}_1, \cdots, \mathcal{B}_k\} \) is a basis of \(\mathbb{R}^n \) (or \(\mathbb{C}^n \)).