REFINED GLOBAL GAN–GROSS–PRASAD CONJECTURE FOR FOURIER–JACOBI PERIODS ON SYMPLECTIC GROUPS

HANG XUE

ABSTRACT. In this paper, we propose a conjectural identity between the Fourier–Jacobi periods on symplectic groups and the central value of certain Rankin–Selberg L-functions. This identity can be viewed as a refinement to the global Gan–Gross–Prasad conjecture for $\text{Sp}(2n) \times \text{Mp}(2m)$. To support this conjectural identity, we show that when $n = m$ and $n = m \pm 1$, it can be deduced from the Ichino–Ikeda’s conjecture in some cases via theta correspondences. As a corollary, the conjectural identity holds when $n = m = 1$ or when $n = 2$, $m = 1$ and the automorphic representation on the bigger group is endoscopic.

CONTENTS

1. Introduction 2
Notation and convention 5
Acknowledgement 7

Part 1. Conjectures 8
2. Conjectures for the Fourier–Jacobi periods 8
3. Convergence and positivity 13
4. Unramified computations 26

Part 2. Compatibility with Ichino–Ikeda’s conjecture 37
5. Some assumptions and remarks 38
6. Ichino–Ikeda’s conjecture for the full orthogonal group 42
7. Compactibility with Ichino–Ikeda’s conjecture: $\text{Sp}(2n) \times \text{Mp}(2n)$ 51
8. Compactibility with Ichino–Ikeda’s conjecture: $\text{Sp}(2n + 2) \times \text{Mp}(2n)$ 57
References 69

2000 Mathematics Subject Classification. 11F70.
1. Introduction

In this paper, we propose a conjectural identity between the Fourier–Jacobi periods on symplectic groups and the central value of certain Rankin–Selberg L-functions. This identity can be viewed as a refinement to the (global) Gan–Gross–Prasad conjecture [8] for $\text{Sp}(2n) \times \text{Mp}(2m)$.

The Gan–Gross–Prasad conjecture predicts that the nonvanishing of certain periods is equivalent to the nonvanishing of the central value of certain L-functions. There are two types of periods: Bessel periods and Fourier–Jacobi periods. Bessel periods are periods of automorphic forms on orthogonal groups or hermitian unitary groups. A lot of work has been devoted to the study of Bessel periods, starting from the pioneering work of Waldspurger [47]. In their seminal work [24], based on an extensive study of the known low rank examples, Ichino and Ikeda proposed a precise formula relating the Bessel periods on $\text{SO}(n+1) \times \text{SO}(n)$ and the central value of some Rankin–Selberg L-functions. The analogous formula for Bessel periods on the hermitian unitary groups $\text{U}(n+1) \times \text{U}(n)$ has been worked out by N. Harris in his thesis [18]. W. Zhang [51, 54] then proved a large part of the conjectural formula for $\text{U}(n+1) \times \text{U}(n)$, using the relative trace formulae proposed by Jacquet–Rallis [25]. This has been further improved by Beuzart-Plessis [6]. Recently, Liu [36] proposed a conjectural formula for Bessel periods in general, i.e. the Bessel periods on $\text{SO}(n + 2r + 1) \times \text{SO}(n)$ or $\text{U}(n + 2r + 1) \times \text{U}(n)$. Some low rank cases have also been considered in [36].

There is a parallel theory for the Fourier–Jacobi periods. They are the periods of automorphic forms on $\text{Mp}(2n + 2r) \times \text{Sp}(2n)$ or $\text{U}(n + 2r) \times \text{U}(n)$. The case of Fourier–Jacobi periods on $\text{U}(n) \times \text{U}(n)$ has been considered in [49, 50]. We proposed a conjectural formula relating the Fourier–Jacobi periods on $\text{U}(n) \times \text{U}(n)$ and the central value of some L-functions. We proved this conjectural formula in some cases, using the relative trace formula proposed by Liu [35]. In the other extreme case, where one of the groups is trivial, the Fourier–Jacobi periods is simply the Whittaker–Fourier coefficients. In this situation, Lapid–Mao [29] proposed a formula computing the norm of the Whittaker–Fourier coefficients. In a series of papers [30–32], they proved the formula for Whittaker–Fourier coefficients on $\text{Mp}(2n)$, under some simplifying conditions at the archimedean places.

The goal of this paper is to formulate a conjectural identity between the Fourier–Jacobi periods and the central value of some Rankin–Selberg L-functions for symplectic groups. We also verify that this conjecture is compatible with Ichino–Ikeda’s conjecture in some cases. As a corollary, the conjectural identity holds in some low rank cases. We now describe our results in more detail.

For simplicity, in the introduction, we consider only the Fourier–Jacobi periods on $\text{Sp}(2n + 2r) \times \text{Mp}(2n)$ ($r \geq 0$). The case $r < 0$ will be explained in the main context of the paper. Let F be a number field and $\psi : F \backslash \mathbb{A}_F \to \mathbb{C}^\times$ be a nontrivial additive character. Let (W_2, q_2) be the
symplectic space over F with an orthogonal decomposition $W_0 + R + R^*$ where R and R^* are isotropic subspaces and $R + R^*$ is the direct sum of $r - 1$ hyperbolic planes. We fix a complete filtration of R and let N_{r-1} be the unipotent radical of the parabolic subgroup of G_2 fixing the complete filtration.

Let $G_2 = \text{Sp}(W_2), G_0 = \text{Sp}(W_0)$ and $\widetilde{G}_0 = \text{Mp}(W_0)$ (the metaplectic double cover). Let π_2 (resp. π_0) be an irreducible cuspidal tempered (resp. genuine) automorphic representation of $G_2(\mathbb{A}_F)$ (resp. $\widetilde{G}_0(\mathbb{A}_F)$). Let $\varphi_2 \in \pi_2$ and $\varphi_0 \in \pi_0$. Let $H = W_0 \ltimes F$ be the Heisenberg group attached to W_0 and ω_ψ be the Weil representation of $H(\mathbb{A}_F) \rtimes \widetilde{G}_0(\mathbb{A}_F)$ which is realized on the Schwartz space $\mathcal{S}(\mathbb{A}_F)$. Let $\phi \in \mathcal{S}(\mathbb{A}_F)$ be a Schwartz function and $\theta_\psi(\cdot, \phi)$ be a theta series on $H(\mathbb{A}_F) \rtimes \widetilde{G}_0(\mathbb{A}_F)$. Let ψ_{r-1} be an automorphic generic character of $N_{r-1}(\mathbb{A}_F)$ which is stable under the conjugation action of $H(\mathbb{A}_F) \rtimes G_0(\mathbb{A}_F)$. The Fourier–Jacobi period of $(\varphi_2, \varphi_0, \phi)$ is the following integral

\begin{equation}
\mathcal{FJ}_\psi(\varphi_2, \varphi_0, \phi) = \int_{G_0(F) \backslash G_0(\mathbb{A}_F)} \int_{H(F) \backslash H(\mathbb{A}_F)} \int_{N_{r-1}(F) \backslash N_{r-1}(\mathbb{A}_F)} \varphi_2(ugh_0) \varphi_0(g_0) \psi_{r-1}(u) \theta_\psi(hg_0, \phi) dudhdg_0.
\end{equation}

This integral is absolutely convergent since φ_2 and φ_0 are both cuspidal. It defines an element in

$$\text{Hom}_{N_{r-1}(\mathbb{A}_F) \rtimes (H(\mathbb{A}_F) \rtimes G_0(\mathbb{A}_F))}(\pi_2 \otimes \pi_0 \otimes \omega_\psi \otimes \psi_{r-1}, \mathbb{C}).$$

This space is at most one dimensional [37, 45].

The Gan–Gross–Prasad conjecture predicts [8, Conjecture 26.1] that if the above Hom-space is not zero, then the integral (1.0.1) does not vanish identically if and only if $L^S_\psi(\frac{1}{2}, \pi_2 \times \pi_0)$ is nonvanishing, where S is a sufficiently large finite set of places of F and $L^S_\psi(s, \pi_2 \times \pi_0)$ is the tensor product L-function of π_2 and π_0 (note that this L-function depends on ψ).

The conjectural identity that we propose is

\begin{equation}
|\mathcal{FJ}_\psi(\varphi_2, \varphi_0, \phi)|^2 = \frac{\Delta^S_{G_2}}{|S_{\pi_2}| |S_{\pi_0}| L^S(1, \pi_2, \text{Ad}) L^S(1, \pi_0, \text{Ad})} \times \prod_{v \in S} \alpha_v(\varphi_{2,v}, \varphi_{0,v}, \phi_v),
\end{equation}

where

- $\varphi_2 = \otimes \varphi_{2,v}, \varphi_{0,v} = \otimes \varphi_{0,v}, \phi = \otimes \phi_v$.
- $\Delta^S_{G_2} = \prod_{i=1}^{n+r} \zeta^S_S(2i)$;
- $L^S_\psi(s, \pi_2 \times \pi_0)$ is the tensor product L-function and $L^S_\psi(s, \pi_2, \text{Ad}), L^S_\psi(1, \pi_0, \text{Ad})$ are adjoint L-functions;
- α_v is a local linear form defined by integration of matrix coefficients (see Section 2.2 for the definition). It is expected that $\alpha_v \neq 0$ if and only if $\text{Hom}_{N_{r-1}(F_v) \rtimes (H(F_v) \rtimes G_0(F_v))}(\pi_{2,v} \otimes \pi_{0,v} \otimes \psi_{r-1,v} \otimes \omega_{\psi_v}, \mathbb{C}) \neq 0$.

\begin{center}
3
\end{center}

\(d_{0} \) in the definition of \(FJ_{\psi} \) is the Tamagawa measure on \(G_{0}(\mathbb{A}_{F}) \), \(du \) and \(dh \) are the self-dual measures on \(N_{r-1}(\mathbb{A}_{F}) \) and \(H(\mathbb{A}_{F}) \) respectively;

- \(S_{\pi_{2}} \) and \(S_{\pi_{0}} \) are centralizers of the \(L \)-parameters of \(\pi_{2} \) and \(\pi_{0} \) respectively. They are abelian 2-groups (see Section 2.3 for a discussion).

This conjectural identity can be viewed as a refinement to the Gan–Gross–Prasad conjecture. It is motivated by the existing conjectural identities of this type [18,24,36,50]. The conjectural identity claims that we should expect the same for both the Bessel periods and the Fourier–Jacobi periods. In the first part of this paper, we show that the conjectural identity (1.0.2) is well-defined, i.e. the local linear form \(\alpha_{\nu} \) is well-defined and the right hand side of (1.0.2) is independent of the set \(S \). In the definition of the local linear form \(\alpha_{\nu} \), we introduce a new way to regularize a divergent oscillating integral over a unipotent group. This gives the same results as the existing regularizations [29,36], but has the advantage of being elementary, purely function theoretic and uniform for both archimedean and non-archimedean places.

One might be asking what happens for the Fourier–Jacobi periods on skew-hermitian unitary groups. An identity similar to 1.0.2 should also hold. We exclude that in the present paper for two reasons. First, sticking to the symplectic groups greatly simplifies the notation. More importantly, in showing that the right hand side of (1.0.2) is independent of \(S \), we make use of some results in [14]. The analogue results for unitary groups have not appeared in print yet. D. Jiang has informed the author that X. Shen and L. Zhang are working on a more general version of the results in [14], which should cover Fourier–Jacobi periods for both symplectic groups and skew-hermitian unitary groups. Once such results are available, one can then formulate the refined Gan–Gross–Prasad conjecture in the context of skew-hermitian unitary groups.

To support our conjecture, in the second part of this paper, we show, under some hypothesis on the local and global Langlands correspondences which we will state in Section 5, that our conjecture is compatible with Ichino–Ikeda’s conjecture in some cases. Thus (1.0.2) holds in some low rank cases when the Ichino–Ikeda’s conjecture is known. We have the following cases.

1. If \(n = 1 \) and \(r = 0 \), then (1.0.2) has been proved in [39, Theorem 4.5].
2. If \(r = 0 \) and \(\pi_{2} \) is a theta lift of some irreducible cuspidal tempered automorphic representation of \(O(2n) \), then (1.0.2) can be deduced from Ichino–Ikeda’s conjecture for \(SO(2n+1) \times SO(2n) \). In this case, if \(\pi_{0} \) is not a theta lift from any \(O(2n+1) \), then both sides of (1.0.2) vanish.
3. If \(r = 1 \) and \(\pi_{2} \) is a theta lift of some irreducible cuspidal tempered automorphic representation of \(O(2n+2) \), then (1.0.2) can be deduced from Ichino–Ikeda’s conjecture for \(SO(2n+2) \times SO(2n+1) \). In this case, if \(\pi_{0} \) is not a theta lift from \(O(2n+1) \), then both sides of (1.0.2) vanish. In particular, when \(n = 1 \), (1.0.2) holds for \(\text{Sp}(4) \times \text{Mp}(2) \), if the automorphic representation on \(\text{Sp}(4) \) is a theta lift from \(O(4) \).
See Theorem 7.1.1 and 8.1.1 for the precise statements. See also Theorem 8.6.1 for an analogous statement in the case $r = -1$. In the course of proving these results, we derive a variant for the Ichino–Ikeda’s conjecture for the full orthogonal group, c.f. Conjecture 6.3.1 and Proposition 6.3.3. I hope that this variant is of some independent interest. See [10] for the case of the triple product formula on GO(4).

Ichino informed the author that there is some minor inaccuracies in the original formulation of Ichino–Ikeda’s conjecture [24, Conjecture 2.1] when the automorphic representation on the even orthogonal group appears with multiplicity two in the discrete automorphic spectrum. In this case, one needs to specify an automorphic realization. Moreover, the size of the centralizer of the Arthur parameter needs to be modified accordingly. We will take care of this modification in Section 6.

It is expected that our conjecture is compatible with the refined Gan–Gross–Prasad conjecture for $SO(2n + 2r + 1) \times SO(2n)$ proposed by Liu [36]. To keep this paper within a reasonable length, we postpone to check this more general compatibility in a future paper.

This paper is organized as follows. The first part of the paper consists of Sections 2, 3 and 4. In Section 2, we first define the Fourier–Jacobi periods and the local linear form α_v. Then we state the conjectural formula for the Fourier–Jacobi periods. In Section 3, we show that the local linear form α_v is well-defined, i.e. its defining integral is either absolutely convergent or can be regularized. We also prove a positivity result for α_v. In Section 4, we compute α_v when all the data involved are unramified. The argument is mostly adapted from [36]. The second part of this paper consists of Sections 5, 6, 7 and 8. In Section 5, we state some working hypotheses on the local and global Langlands correspondences and make some remarks on the theta correspondences. For orthogonal groups and symplectic groups, these hypotheses should follow from the work of Arthur [2]. For metaplectic groups, they should eventually follow from the on-going work of Wen-Wei Li (e.g. [34]). In section 6, we review the Ichino–Ikeda’s conjecture and derive a variant of it for the full orthogonal group. In Section 7, we study the conjecture in the case $Mp(2n) \times Sp(2n)$ via a seesaw argument. This type of argument has also been used in [3,11,50]. In Section 8, we study the conjecture in the case $Sp(2n + 2) \times Mp(2n)$. For the convenience of the readers, we remark that Section 3, 4 and the second part of the paper are logically independent. Section 7 and 8 are also logically independent. They can be read in any order.

Notation and convention

The following notation will be used throughout this paper. Let F be a number field, \mathfrak{o}_F the ring of integers and \mathbb{A}_F the ring of adeles. For any finite place v, let $\mathfrak{o}_{F,v}$ be the ring of integers of F_v and ϖ_v a uniformizer. Let $q_v = |\mathfrak{o}_{F,v}/\varpi_v|$ be the number of elements in the residue field of
v. We fix a nontrivial additive character \(\psi = \otimes \psi_v : F \backslash \mathbb{A}_F \to \mathbb{C}^\times \). We assume that \(\psi \) is unitary, thus \(\psi^{-1} = \overline{\psi} \). For any \(a \in F^\times \), we define an additive character \(\psi_a \) of \(F \backslash \mathbb{A}_F \) by \(\psi_a(x) = \psi(ax) \).

For any place \(v \) of \(F \), let \((\cdot, \cdot)_v \) be the Hilbert symbol of \(F_v \) and \(\gamma_{\psi_v} \) the Weil index, which is an eighth root of unity. Note that \(\prod_v \gamma_{\psi_v} = 1 \).

Suppose that \(V \) is a vector space and \(v_1, \ldots, v_r \in V \). Then we denote by \(\langle v_1, \ldots, v_r \rangle \) the subspace of \(V \) generated by \(v_1, \ldots, v_r \). We write \(S(V) \) for the space of Schwartz functions on \(V \).

Let \((V, q_V) \) be a quadratic space of dimension \(n \) over \(F \) where \(V \) is the underlying vector space and \(q_V \) is the quadratic form. We can choose a basis of \(V \) so that its quadratic form is represented by a diagonal matrix with entries \(a_1, \ldots, a_n \). We define the discriminant \(\text{disc} V \) of \(V \) by

\[
\text{disc} V = (-1)^{\frac{n(n-1)}{2}} a_1 \cdots a_n \in F^\times / F^\times 2
\]

Define a quadratic character \(\chi_V : F^\times \backslash \mathbb{A}_F^\times \to \{ \pm 1 \} \) by \(\chi_V(x) = (x, \text{disc} V)_F \).

Let \((W, q_W) \) be a symplectic space of dimension \(2n \) over \(F \) where \(W \) is the underlying vector space and \(q_W \) is the symplectic form. Then we denote by \(\text{Sp}(W) \) or \(\text{Sp}(2n) \) the symplectic group attached to \(W \) and \(\text{Mp}(W) \) or \(\text{Mp}(2n) \) the metaplectic double cover. By definition, if \(v \) is a place of \(F \), then \(\text{Mp}(W)(F_v) = \text{Sp}(W)(F_v) \ltimes \{ \pm 1 \} \) and the multiplication is given by

\[
(g_1, \epsilon_1)(g_2, \epsilon_2) = (g_1 g_2, \epsilon_1 \epsilon_2 c(g_1, g_2)),
\]

where \(c(g_1, g_2) \) is some 2-cocycle on \(\text{Sp}(W) \) valued in \(\{ \pm 1 \} \) [41]. Moreover

\[
\text{Mp}(W)(\mathbb{A}_F) = \prod_v \text{Mp}(W)(F_v)/\{(1, \epsilon_v), \epsilon_v \prod_v = 1 \}.
\]

If \(g \in \text{Sp}(W)(\mathbb{A}_F) \) (resp. \(\text{Sp}(W)(F_v) \)), then we define \(\iota(g) = (g, 1) \in \text{Mp}(W)(\mathbb{A}_F) \) (resp. \(\text{Mp}(F_v) \)). Note that \(g \mapsto \iota(g) \) is not a group homomorphism.

By a genuine function on \(\text{Mp}(W)(F_v) \), we mean a function on \(\text{Mp}(W)(F_v) \) which is not the pullback of a function on \(\text{Sp}(W)(F_v) \). We always identify a function on \(\text{Sp}(W)(F_v) \) with a non-genuine function on \(\text{Mp}(W)(F_v) \) and \(h_1, \cdots, h_s \) are functions on \(\text{Sp}(W)(F_v) \) such that the product \(f_1 \cdots f_r \) is not genuine. Then we write

\[
\int_{\text{Sp}(W)(F_v)} f_1(g) \cdots f_r(g) h_1(g) \cdots h_s(g) dg = \int_{\text{Sp}(W)(F_v)} f_1(\iota(g)) \cdots f_r(\iota(g)) h_1(g) \cdots h_s(g) dg.
\]

An irreducible representation of \(\text{Mp}(W)(F_v) \) is said to be genuine if the element \((1, \epsilon) \) acts by \(\epsilon \). We always identify an irreducible representation of \(\text{Sp}(W)(F_v) \) with a non-genuine representation of \(\text{Mp}(W)(F_v) \). We make similar definitions for genuine functions and representations of \(\text{Mp}(W)(\mathbb{A}_F) \).
Suppose v is a non-archimedean place of F whose residue characteristic is not two. Let $B = TU$ is a Borel subgroup of $\text{Sp}(2n)$ and $\widetilde{B} = \widetilde{T}U$ the inverse image of B in $\text{Mp}(2n)(F_v)$. Then $\widetilde{T} \simeq (F_v^\times)^n \times \{\pm 1\}$. We define a genuine character $\chi_{\psi}(t)$ of \widetilde{T} by

$$\chi_{\psi_v}((t_1, \ldots, t_n), \epsilon) = \epsilon \gamma_{\psi_v}^{-1} \gamma_{\psi_v, t_1, \ldots, t_n}.$$

Suppose that the conductor of ψ_v is $\mathfrak{o}_{F,v}$. By an unramified principal series representation of $\text{Mp}(2n)(F_v)$, we mean the induced representation $I(\chi) = \text{Ind}_{B}^{\text{Mp}(2n)(F_v)} \chi_{\psi_v, \chi}$, where χ be a character of $T \simeq F_v^n$ defined by $\chi(t_1, \ldots, t_n) = |t_1|^{\alpha_1} \cdots |t_n|^{\alpha_n}$, $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. This convention of parabolic inductions of the metaplectic group is the one in [13]. If π_v is an unramified representation of $\text{Mp}(2n)(F_v)$, then we can find an unramified character χ of T as above and $\pi_v \subset I(\chi)$. The complex numbers $(\alpha_1, \ldots, \alpha_n)$ are called the Satake parameters of π_v. Note that the Satake parameters of π_v depend also on ψ_v.

We write 1_r for the $r \times r$ identity matrix. We recursively define $w_1 = \{1\}$ and $w_r = \begin{pmatrix} w_{r-1} & 1 \\ 1 & 0 \end{pmatrix}$. Suppose $a = (a_1, \ldots, a_r) \in (F^\times)^r$. We let $\text{diag}[a_1, \ldots, a_r]$ be the diagonal matrix with diagonal entries a_1, \ldots, a_r.

Suppose that G is a unimodular locally compact topological group and dg a Haar measure. Suppose that π is a representation of G, realized on some space V. Let f be a continuous function on G. Then we put (whenever it makes sense, e.g. f is compactly supported and locally constant)

$$\pi(f)v = \int_{G} f(g)\pi(g).vdg.$$

Let S be a finite set of places of F. We define a constant Δ^S_G as follows. If $G = \text{Mp}(2n)$ or $\text{Sp}(2n)$, we define $\Delta^S_G = \prod_{i=1}^{n} \zeta^S_F(2i)$. If $G = O(V)$ or $\text{SO}(V)$ when $n = \dim V \geq 3$, then we define

$$\Delta^S_G = \begin{cases} \zeta^S_F(2) \zeta^S_F(4) \cdots \zeta^S_F(n-1), & \text{if } n \text{ is odd} \\ \zeta^S_F(2) \zeta^S_F(4) \cdots \zeta^S_F(n-2) L^S(\frac{n}{2}, \chi_V), & \text{if } n \text{ is even}, \end{cases}$$

Suppose that v is a place F, then we define $\Delta^S_{G,v}$ in an analogous way, replacing the partial L-functions by the local Euler factors at v. In this case, if T is a split maximal torus in $\text{Sp}(2n)$ and \widetilde{T} is the inverse image of T in $\text{Mp}(2n)$, then we define $\Delta^S_{\widetilde{T},v} = \Delta^S_{T,v} = (1 - q_v^{-1})^{-n}$.

Acknowledgement

I thank Atsushi Ichino for pointing to me the inaccuracy in [24] and some inaccuracies in an early draft of this paper. I thank Raphael Beuzart-Plessis, Wee Teck Gan, Yifeng Liu, Bin Xu, Wei Zhang and Shou-Wu Zhang for many helpful discussions. I am also grateful for the anonymous referee for the careful reading of the manuscript and the numerous suggestions which
greatly improve the exposition of this paper. This material is based upon work supported by the National Science Foundation under agreement No. DMS-1128115.

Part 1. Conjectures

2. Conjectures for the Fourier–Jacobi periods

2.1. Global Fourier–Jacobi periods. Let \((W_2, q_2)\) be a \(2m\) dimensional symplectic space over \(F\). We choose a basis \(\{e_m, \ldots, e_1, e_m\}\) of \(W_2\) so that \(q_2(e_i, e_j) = \delta_{ij}\). For \(1 \leq i \leq m\), let \(R_i = \langle e_{m-i+1}, \ldots, e_m \rangle\) and \(R_i^* = \langle e_m^*, \ldots, e_{m-i+1}^* \rangle\) be isotropic subspaces of \(W_2\). Put \(R_0 = R_0^* = \{0\}\). Let \(0 \leq r \leq m\) be an integer and put \(n = m - r\) and \((W_0, q_0)\) the orthogonal complement of \(R_r + R_r^*\). We define \((W_1, q_1) = W_0 + \langle e_{n+1}, e_{n+1}^* \rangle\). Let \(G_i = \text{Sp}(W_i)\) and \(\widetilde{G}_i = \text{Mp}(W_i)\).

Let \(0 \leq i \leq n\) be an integer. Let \(P_i\) be the parabolic subgroup of \(G_2\) stabilizing the flag

\[0 = R_0 \subset R_1 \subset \cdots \subset R_i,\]

with the Levi decomposition \(P_i = M_i N_i\). Here and below in this article, the notation \(P = MN\) signifies that \(M\) is the Levi subgroup and \(N\) is the unipotent radical of \(P\). We denote by \(W_i\) the orthogonal complement of \(R_i + R_i^*\) and \(G_i = \text{Sp}(W_i)\). Then \(M_i = G_i \times \text{GL}_1^i\). Let \(\psi_m\) be the character of \(N_m\) defined by

\[
\psi_m(n) = \psi \left(\sum_{j=1}^{m-1} q_2(ne_{m-j+1}^*, e_{m-j}) + q_2(ne_1^*, e_1^*) \right).
\]

Let \(\psi_i\) be the restriction of \(\psi_m\) to \(N_i\).

Let \(H = H(W_0)\) be the Heisenberg group attached to the symplectic space \(W_0\). By definition, \(H = W_0 \ltimes F\) and the group law is given by

\[(w_1, t_1)(w_2, t_2) = (w_1 + w_2, t_1 + t_2 + q_0(w_1, w_2)).\]

The group \(H\) embeds in \(G_2\) as a subgroup of \(G_1\) and \(H = G_1 \cap N_r, N_r = N_{r-1}H\). Let \(L = \langle e_1, \ldots, e_n \rangle\) and \(L^* = \langle e_n^*, \ldots, e_1^* \rangle\). Then \(W_0 = L + L^*\) is a complete polarization. We sometimes write an element \(h \in H\) as \(h(l + l^*, t)\) where \(l \in L, l^* \in L^*\) and \(t \in F\). Let \(v\) be a place of \(F\) and \(\omega_{\psi_v}\) be the Weil representation of \(H(F_v)\) which is realized on \(S(L^*(F_v))\). It is defined by

\[
\omega_{\psi_v}(h(y + x, t))f(l^*) = \psi(t + q_2(2x + l^*, y))f(l^* + x), f \in S(L^*(F_v)), l^*, x \in L^*(F_v), y \in L(F_v).
\]

This is the unique irreducible infinite dimensional representation of \(H(F_v)\) whose central character is \(\psi_v\). It induces an action of \(\widetilde{G}_0(F_v)\) on \(S(L^*(F_v))\). We denote the joint action of \(H(F_v) \times \widetilde{G}_0(F_v)\) on \(S(L^*(F_v))\) again by \(\omega_{\psi_v}\). We take the convention that if \(W_0 = \{0\}\), then \(\omega_{\psi_v} = \psi_v\).
Taking restricted tensor product of the Weil representations ω_{ψ_v}, we obtain a global Weil representation ω_{ψ} of $H(\mathbb{A}_F) \times \tilde{G}_0(\mathbb{A}_F)$ which is realized on $\mathcal{S}(L^*(\mathbb{A}_F))$. We define the theta series

$$
\theta_{\psi}(hg_0, \phi) = \sum_{l^* \in L^*(F)} \omega_{\psi}(hg_0)\phi(l^*), \quad \phi \in \mathcal{S}(L^*(\mathbb{A}_F)), h \in H(\mathbb{A}_F), g_0 \in \tilde{G}_0(\mathbb{A}_F).
$$

We now talk about automorphic representations. There are two cases.

Case Mp: Let $\pi_2 = \otimes_{\theta_{\psi_v}}$ be an irreducible cuspidal genuine automorphic representation of $\tilde{G}_2(\mathbb{A}_F)$ and $\pi_0 = \otimes_{\theta_{\psi_v}}$ be an irreducible cuspidal automorphic representation of $G_0(\mathbb{A}_F)$.

Case Sp: Let $\pi_2 = \otimes_{\theta_{\psi_v}}$ be an irreducible cuspidal automorphic representation of $G_2(\mathbb{A}_F)$ and $\pi_0 = \otimes_{\theta_{\psi_v}}$ be an irreducible cuspidal genuine automorphic representation of $\tilde{G}_0(\mathbb{A}_F)$.

Let S be a sufficiently large finite set of places of F containing all archimedean places and finite places whose residue characteristic is two, such that $\pi_{2,v}$ and $\pi_{0,v}$ are both unramified and the conductor of ψ_v is $\mathfrak{o}_{F,v}$ if $v \not\in S$. Let $(\alpha_{1,v}, \cdots, \alpha_{m,v})$ and $(\beta_{1,v}, \cdots, \beta_{n,v})$ be the Satake parameters of $\pi_{2,v}$ and $\pi_{0,v}$ respectively. Put

$$A_2 = \begin{cases}
\text{diag}[\alpha_{1,v}, \cdots, \alpha_{m,v}, \alpha_{m,v}^{-1}, \cdots, \alpha_{1,v}^{-1}] & \text{Case Mp}, \\
\text{diag}[\alpha_{1,v}, \cdots, \alpha_{m,v}, 1, \alpha_{m,v}^{-1}, \cdots, \alpha_{1,v}^{-1}] & \text{Case Sp},
\end{cases}$$

and

$$A_0 = \begin{cases}
\text{diag}[\beta_{1,v}, \cdots, \beta_{n,v}, 1, \beta_{n,v}^{-1}, \cdots, \beta_{1,v}^{-1}] & \text{Case Mp}, \\
\text{diag}[\beta_{1,v}, \cdots, \beta_{n,v}, \beta_{n,v}^{-1}, \cdots, \beta_{1,v}^{-1}] & \text{Case Sp}.
\end{cases}$$

We then define the tensor product L-function

$$L_{\psi_v}(s, \pi_{2,v} \times \pi_{0,v}) = \det(1 - A_2 \otimes A_0 \cdot q_v^{-s})^{-1}, \quad L_{\psi}^S(s, \pi_2 \times \pi_0) = \prod_{v \in S} L_{\psi_v}(s, \pi_{2,v} \times \pi_{0,v}).$$

The partial L-function is convergent for $\Re s \gg 0$. We denote by $L_{\psi_v}(s, \pi_{i,v}, \text{Ad})$ and $L_{\psi}^S(s, \pi_i, \text{Ad}) = \prod_{v \in S} L_{\psi_v}(s, \pi_{i,v}, \text{Ad})$ the (local and partial) adjoint L-functions of π_i. If π_i is an automorphic representation of the metaplectic group (resp. symplectic group), then they depend (resp. do not depend) on ψ. We include the subscript ψ in both cases to unify notation. We assume that these L-functions can be meromorphically continued to the whole complex plane.

Let $\varphi_2 \in \pi_2$, $\varphi_0 \in \pi_0$ and $\phi \in \mathcal{S}(L^*(\mathbb{A}_F))$. Define

$$\mathcal{F}\mathcal{J}_\psi(\varphi_2, \varphi_0, \phi) = \int_{G_0(F) \backslash G_0(\mathbb{A}_F)} \int_{H(F) \backslash H(\mathbb{A}_F)} \int_{N_{r-1}(F) \backslash N_{r-1}(\mathbb{A}_F)} \varphi_2(uhg_0)\varphi_0(g_0)\psi_{r-1}(u)\theta_\psi(hg_0, \phi) dg_0 dh dg_0.$$

The measures du and dh are the self-dual measures on $N_{r-1}(\mathbb{A}_F)$ and $H(\mathbb{A}_F)$ respectively. The measure dg_0 is the Tamagawa measures on $G_0(\mathbb{A}_F)$.

9
2.2. Local Fourier–Jacobi periods. We fix a Haar measure \(dg_{0,v}\) on \(G_0(F_v)\) for each \(v\) such that the volume of \(G_0(o_v)\) equals one for almost all \(v\). Then there is a constant \(C_0\) such that \(dg_0 = C_0 \prod_v dg_{0,v}\). Following [24], we call \(C_0\) the measure constant.

Let \(\mathcal{B}_{\pi_i}(i = 0, 2)\) be the canonical bilinear pairing between \(\pi_i\) and \(\pi_i^\vee\) defined by

\[
\mathcal{B}_{\pi_i}(\varphi, \varphi^\vee) = \int_{G_2(F)\backslash G_2(\mathbb{A}_F)} \varphi(g)\varphi^\vee(g)dg, \quad \varphi \in \pi_i, \ \varphi^\vee \in \pi_i^\vee.
\]

We fix a bilinear pairing \(\mathcal{B}_{\pi_i,v}\) between \(\pi_i,v\) and \(\pi_i^\vee,v\) for each place \(v\) such that \(\mathcal{B}_{\pi_i} = \prod_v \mathcal{B}_{\pi_i,v}\).

Put \(\Phi_{\varphi_i,v}(g) = \mathcal{B}_{\pi_i,v}(\pi_i,v(g)\varphi_i,v,\varphi_i^\vee,v)\) if \(\varphi_i,v \in \pi_i,v\) and \(\varphi_i^\vee,v \in \pi_i^\vee,v\).

The contragredient representation of \(\omega_{\psi}\) is \(\omega_{\psi^{-1}}\) (again realized on \(S(L^*(\mathbb{A}_F))\)) and there is a canonical pairing between \(\omega_{\psi,v}\) and \(\omega_{\psi,v^{-1}}\) given by

\[
\mathcal{B}_{\omega_{\psi,v}}(\phi, \phi^\vee) = \int_{L^*(F_v)} \phi(l^*)\phi^\vee(l^*)dl^*, \quad \phi, \phi^\vee \in S(L^*(\mathbb{A}_F)),
\]

where the measure \(dl^*\) is the self-dual measure on \(L^*(\mathbb{A}_F)\). Similarly, for any place \(v\), there is a canonical pairing between \(\omega_{\psi,v}\) and \(\omega_{\psi,v^{-1}}\) given by

\[
\mathcal{B}_{\omega_{\psi,v}}(\phi_v, \phi_v^\vee) = \int_{L^*(F_v)} \phi_v(l^*)\phi_v^\vee(l^*)dl^*, \quad \phi_v, \phi_v^\vee \in S(L^*(F_v)),
\]

where the measure \(dl^*\) is the self-dual measure on \(L^*(F_v)\). Then \(\mathcal{B}_{\omega_{\psi}} = \prod_v \mathcal{B}_{\omega_{\psi,v}}\). Put \(\Phi_{\phi_v,\phi_v^\vee}(g) = \mathcal{B}_{\omega_{\psi,v}}(\omega_{\psi,v}(g)\phi_v, \phi_v^\vee)\).

We now fix a place \(v\) of \(F\). Recall that the group \(P_m\) of \(G_2\) is a minimal parabolic subgroup which is contained in \(P_{r-1}\). For any real number \(\gamma \geq -\infty\), define

\[
N_{m,\gamma} = \{u \in N_m(F_v) \mid |q_2(ue^*_v, e^*_1)| \leq e^\gamma, |q_2(ue^*_v, e^*_i)| \leq e^\gamma, \ 1 \leq i \leq m - 1\}.
\]

For any \(\gamma \geq -\infty\), we define \(N_{i,\gamma} = N_i(F_v) \cap N_{m,\gamma}\). Define

\[
\mathcal{F}_{\psi,\Phi_{\varphi_2,v,\varphi_2^\vee,v}}(hg_0) = \lim_{\gamma \to \infty} \int_{N_{r-1,\gamma}(F_v)} \Phi_{\varphi_2,v,\varphi_2^\vee,v}(h g_0 u)\overline{\psi_{r-1,v}(u)}du, \quad \varphi_2,v \in \pi_2,v, \varphi_2^\vee,v \in \pi_2^\vee,v
\]

where \(h \in H(F_v)\) and \(g_0 \in G_0(F_v)\) in the case Sp (resp. \(g_0 \in \widetilde{G}_0(F_v)\) in the case Mp). Define

\[
\alpha_v(\varphi_2,v, \varphi_2^\vee,v, \varphi_0,v, \varphi_0^\vee,v, \varphi_v, \varphi_v^\vee) = \int_{G_0(F_v)} \int_{H(F_v)} \mathcal{F}_{\psi,\Phi_{\varphi_2,v,\varphi_2^\vee,v}}(hg_0)\Phi_{\varphi_0,v,\varphi_0^\vee,v}(g_0)\Phi_{\varphi_v,\varphi_v^\vee}(hg_0)dh dg_0,
\]

for \(\varphi_i,v \in \pi_i,v, \varphi_i^\vee,v \in \pi_i^\vee,v, \varphi_v, \varphi_v^\vee \in S(L^*(F_v))\). If \(r \leq 1\), then it is to be understood that \(\mathcal{F}_{\psi,\Phi_{\varphi_2,v,\varphi_2^\vee,v}} = \Phi_{\varphi_2,v,\varphi_2^\vee,v}\). Moreover, if \(r = 0\), then it is to be understood that the integral over \(H(F_v)\) is void.

Proposition 2.2.1. Assume that \(\pi_2,v\) and \(\pi_0,v\) are both tempered. Then the limit in the definition of \(\mathcal{F}_{\psi,\Phi_{\varphi_2,v,\varphi_2^\vee,v}}\) exists. Moreover, the defining integral of \(\alpha_v\) is absolutely convergent.
If \(\pi_{i,v} \) is unitary, then we may identify \(\pi_{i,v}^{\vee} \) with \(\overline{\pi_{i,v}} \). We then define

\[
\alpha_v(\varphi_{2,v}, \varphi_{0,v}, \phi_v) = \alpha_v(\varphi_{2,v}, \overline{\varphi_{2,v}}, \overline{\varphi_{0,v}}, \phi_v, \overline{\phi_v}).
\]

Proposition 2.2.2. Assume that \(\pi_{2,v} \) and \(\pi_{0,v} \) are unitary and tempered. Then \(\alpha_v(\varphi_{2,v}, \varphi_{0,v}, \phi_v) \geq 0 \) for all smooth vectors \(\varphi_{2,v} \in \pi_{2,v}, \varphi_{0,v} \in \pi_{0,v} \) and \(\phi_v \in \mathcal{S}(L^*(F_v)) \).

These two propositions will be proved in Section 3. We now consider the unramified situation. Note first that the symplectic spaces \(W_i \)'s, the isotropic subspaces \(R_i \)'s and hence the groups \(G_i \)'s are naturally defined over \(\mathfrak{o}_F \). Let \(S \) be a sufficiently large finite set of places of \(F \) containing all archimedean places and finite places whose residue characteristic is two, such that if \(v \not\in S \), then the following conditions hold.

1. The conductor of \(\psi_v \) is \(\mathfrak{o}_{F,v} \).
2. \(\varphi_v = \phi_v = 1_{L^*(\mathfrak{o}_F)} \).
3. For \(i = 0, 2 \), \(\varphi_{i,v} \) and \(\varphi_{i,v}^{\vee} \) are fixed by \(G_i(\mathfrak{o}_F) \) and satisfy \(\mathcal{B}_{\pi_{i,v}}(\varphi_{i,v}, \varphi_{i,v}^{\vee}) = 1 \). In particular, the representations \(\pi_{i,v} \) and \(\pi_{i,v}^{\vee} \) are unramified.
4. \(\int_{G_o(\mathfrak{o}_F)} d\gamma_{o,v} = 1 \).

Proposition 2.2.3. If \(v \not\in S \) and the defining integral of \(\alpha_v \) is convergent, then

\[
\alpha_v(\varphi_{2,v}, \varphi_{2,v}^{\vee}, \varphi_{0,v}^{\vee}, \phi_v, \phi_v^{\vee}) = \Delta_{G_{2,v}} L_{\psi_v}(\frac{1}{2}, \pi_{2,v} \times \pi_{0,v}) L_{\psi_v}(1, \pi_{0,v}, \text{Ad}) L_{\psi_v}(1, \pi_{2,v}, \text{Ad}).
\]

We will prove this proposition in Section 4. Note that in this proposition, we do not assume that the representations \(\pi_{2,v} \) and \(\pi_{0,v} \) are tempered.

2.3. Conjectures. Following [24] and [36], we say that the representations \(\pi_2 \) and \(\pi_0 \) are almost locally generic if for almost all places \(v \) of \(F \), the local components \(\pi_{2,v} \) and \(\pi_{0,v} \) are generic. Suppose that we are in the case of \(\text{Mp} \). As explained in [24], the automorphic representations \(\pi_2 \) and \(\pi_0 \) should come from some elliptic Arthur parameters

\[
\Psi_2 : L_F \times \text{SL}_2(\mathbb{C}) \to \widetilde{G}_2 = \text{Sp}(2m, \mathbb{C}), \quad \Psi_0 : L_F \times \text{SL}_2(\mathbb{C}) \to \widetilde{G}_0 = \text{SO}(2n + 1, \mathbb{C})
\]

where \(L_F \) is the (hypothetical) Langlands group of \(F \). If \(\pi_i \) is tempered, then \(\Psi_i \) is trivial on \(\text{SL}_2(\mathbb{C}) \). It is believed (Ramanujan conjecture) that almost locally generic representations are tempered. We define \(S_{\pi_2} \) (resp. \(S_{\pi_0} \)) to be the centralizer of the image of \(\Psi_2 \) in \(\widetilde{G}_2 \) (resp. \(\widetilde{G}_0 \)). They are finite abelian 2-groups. In the case \(\text{Sp} \), we have the same discussion, except that we replace \(\widetilde{G}_2 \) by \(G_2 \) and replace \(G_0 \) by \(\widetilde{G}_0 \).

Conjecture 2.3.1. Assume that \(\pi_2 \) and \(\pi_0 \) are irreducible cuspidal automorphic representations that are almost locally generic. Then the following statements hold.

\[
\Psi_2(\varphi_{2,v}, \varphi_{0,v}, \phi_v) = \alpha_v(\varphi_{2,v}, \varphi_{0,v}, \phi_v) \geq 0 \quad \text{for all smooth vectors} \quad \varphi_{2,v} \in \pi_{2,v}, \varphi_{0,v} \in \pi_{0,v} \quad \text{and} \quad \phi_v \in \mathcal{S}(L^*(F_v)).
\]
(1) The defining integral of $\alpha_v(\varphi_{2,v}, \varphi'_{2,v}, \varphi_{0,v}, \varphi'_{0,v}, \phi_v, \phi'_v)$ is convergent for any K_i-finite vectors $\varphi_{i,v}$, $\varphi'_{i,v}$ and K_0-finite Schwartz functions ϕ_v, ϕ'_v, where K_i is a maximal compact subgroup of $G_i(F_v)$, $i = 0, 2$;

(2) $\alpha_v(\varphi_{2,v}, \varphi_{0,v}, \phi_v) \geq 0$ for any K_i-finite vectors $\varphi_{i,v}$ and K_0-finite Schwartz function ϕ_v. Moreover, $\alpha_v(\varphi_{2,v}, \varphi_{0,v}, \phi_v) = 0$ for all K_i-finite $\varphi_{i,v}$ and K_0-finite ϕ_v precisely when

\[\text{Hom}_{N_{r-1}(F_v) \times (H(F_v) \times G_0(F_v))}((\pi_{2,v} \otimes \pi_{0,v} \otimes \psi_{r-1,v} \otimes \omega_{\psi_v}, \mathbb{C}) = 0; \]

(3) Assume that $\varphi_i = \otimes_v \varphi_{i,v} \in \pi_i$ ($i = 0, 2$) and $\phi = \otimes_v \phi_v \in \mathcal{S}(L^*(\mathbb{A}_F))$ are factorizable, then

\[|FJ_\psi(\varphi_2, \varphi_0, \phi)|^2 = \frac{C_0 \Delta_{G_2}^S}{|S_{\pi_2}| |S_{\pi_0}|} \left| \frac{L^S_{\psi}(s, \pi_2 \times \pi_0)}{L^S_{\psi}(s + \frac{1}{2}, \pi_2, \text{Ad}) L^S_{\psi}(s + \frac{1}{2}, \pi_0, \text{Ad})} \right|_{s = \frac{1}{2}} \times \prod_{v \in S} \alpha_v(\varphi_{2,v}, \varphi_{0,v}, \phi_v). \]

Remark 2.3.2. It follows from the Proposition 2.2.3 that the right hand side of (2.3.1) does not depend on the finite set S.

Remark 2.3.3. Assume that π_2 and π_0 are both tempered. It is then believed that $L^S_{\psi}(s, \pi_2 \times \pi_0)$ and $L^S_{\psi}(s, \pi_i, \text{Ad})$ should be holomorphic for $\Re s > 0$. Moreover, $L^S_{\psi}(1, \pi_i, \text{Ad}) \neq 0$.

Remark 2.3.4. Without the assumption of almost local genericity of π_2 and π_0, we expect that local linear forms α_v can be “analytically continued” in some way so that it is defined for all representations $\pi_{2,v}$ and $\pi_{0,v}$. This is indeed the case if $v \notin S$. Thus α_v is well-defined for all v if π_2 and π_0 satisfy the property that $\pi_{2,v}$ and $\pi_{0,v}$ are both tempered if $v \in S$. Moreover, we expect that the identity 2.3.1 holds with the quantity $|S_{\pi_2}| |S_{\pi_0}|$ replaced by some $2^{-\beta}$ where β is an integer. The nature of β, however, remains mysterious at this moment.

We end this section by writing Conjecture 2.3.1 (3) in an equivalent form which does not involve the finite set S. We may define the completed L-functions

\[L_\psi(s, \pi_2 \times \pi_0), \quad L_\psi(s, \pi_i, \text{Ad}), \quad i = 0, 2. \]

The actual definition of the local Euler factor of these L-functions is not essential to us since Conjecture 2.3.1 does not depend on the definition of these Euler factors. Put

\[\mathcal{L} = \Delta_{G_2} \left| \frac{L_\psi(s, \pi_2 \times \pi_0)}{L_\psi(s + \frac{1}{2}, \pi_2, \text{Ad}) L_\psi(s + \frac{1}{2}, \pi_0, \text{Ad})} \right|_{s = \frac{1}{2}} \]

and let \mathcal{L}_v be its local Euler factor evaluated at $s = \frac{1}{2}$ at the place v. Define

\[\alpha_v^\pm = \mathcal{L}_v^{-1} \alpha_v. \]

Then the identity (2.3.1) can be rewritten as

\[FJ_\psi \cdot \overline{FJ_\psi} = \frac{C_0}{|S_{\pi_2}| |S_{\pi_0}|} \mathcal{L} \cdot \prod_v \alpha_v^\pm. \]
The product is convergent since there are only finitely many terms which do not equal to 1.
This is an equality of elements in
\[\operatorname{Hom}(\pi_2 \otimes \pi_0 \otimes \psi_{r-1} \otimes \omega \psi, \mathbb{C}) \otimes \operatorname{Hom}(\pi_2 \otimes \pi_0 \otimes \psi_{r-1} \otimes \omega \psi, \mathbb{C}). \]
Note that by [37, 45, 46], this space is at most one dimensional. So we know a priori that there is a constant \(C \) such that
\[\mathcal{F}J_\psi \cdot \mathcal{F}J_\psi = C \cdot \prod_v \alpha_v^2. \]
The point of Conjecture 2.3.1 is thus to compute the constant \(C \).

3. Convergence and positivity

For the rest of Part I of this paper, we fix a place \(v \) of \(F \) and suppress it from all notation. Thus \(F \) is a local field of characteristic zero. To shorten notation, for any algebraic group \(G \) or \(G = \text{Mp}(2n) \) over \(F \), we denote by \(G \) instead of \(G(F) \) for its group of \(F \)-points. We have fixed a basis \(\{ e^*_m, \cdots, e^*_1, e_1, \cdots, e_m \} \) of \(W_2 \). We thus realize the group \(\tilde{G}_2 \) and its various subgroups as groups of matrices. We also identify \(W_i, L, \tilde{L}^* \) as spaces of row vectors. We put \(K_i = G_i(o_F) \). This is a maximal compact subgroup of \(G_i \). The group \(P_m \) consists of upper triangular matrices. The group \(P_m \cap G_i \) is a minimal parabolic subgroup of \(G_i \).

Suppose \(a = (a_1, \cdots, a_n) \in (F^\times)^n \). Then we let \(d(a) \in G_0 \) so that \(d(a)e^*_i = a_i e^*_i \) for any \(1 \leq i \leq n \). We also put \(a = \text{diag}[a_n, \cdots, a_1] \in \text{GL}_n \).

3.1. Preliminaries. We recall some basic estimates in this subsection. We follow [24, Section 4] rather closely.

Let \(G \) be a reductive group over \(F \). Let \(A_G \) be a maximal split subtorus of \(G \), \(M_0 \) the centralizer of \(A_G \) in \(G \). We fix a minimal parabolic subgroup \(P_0 \) of \(G \) with the Levi decomposition \(P_0 = M_0 N_0 \). Let \(\Delta \) be the set of simple roots of \((P_0, A_G) \). Let \(\delta_{P_0} \) be the modulus character of \(P_0 \). Let
\[A_G^+ = \{ a \in A_0 \mid |\alpha(a)| \leq 1 \text{ for all } \alpha \in \Delta \}. \]
We fix a special maximal compact subgroup \(K \) of \(G \). Then we have a Cartan decomposition \(G = KA_G^+ K \). We also have the Iwasawa decomposition
\[G = M_0 N_0 K, \quad g = m_0(g) n_0(g) k_0(g). \]

Let \(f \) and \(f' \) be two nonnegative functions on \(G \). We say that \(f \ll f' \) if there is a constant \(C \) such that \(f(g) \leq C f'(g) \) for all \(g \in G \). We say that \(f \sim f' \) if \(f \ll f' \) and \(f' \ll f \). In this case we say that \(f \) and \(f' \) are equivalent.

For any function \(f \in L^1(G) \),
\[\int_G f(g) \, dg = \int_{A_G^+} \nu(m) \int_{K \times K} f(k_1 m k_2) \, dk_1 dk_2 dm, \quad (3.1.1) \]
where \(\nu(m) \) is a positive function on \(A^+_G \) such that

\[
\nu(m) \sim \delta_{P_0}(m)^{-1}. \tag{3.1.2}
\]

Let \(1 \) be the trivial representation of \(M_0 \) and let \(e(g) = \delta_{P_0}(m_0(g))^{\frac{1}{2}} \) be an element in \(\text{Ind}^{G}_{P_0} 1 \). Let \(dk \) be the measure on \(K \) such that \(\text{vol} \, K = 1 \). We define the Harish–Chandra function

\[
\Xi(g) = \int_K e(kg) \, dk = \int_K \delta_{P_0}(m_0(kg))^{\frac{1}{2}} \, dk.
\]

This function is bi-\(K \)-invariant. This function depends on the choice of \(K \). However, different choices of \(K \) give equivalent functions on \(G \). So this choice will not affect our estimates.

We define a height function on \(G \). We fix an embedding \(\tau : G \to \text{GL}_n \). Write \(\tau(g) = (a_{ij}) \) and \(\tau(g^{-1}) = (b_{ij}) \). Define

\[
\varsigma(g) = \sup \{ 1, \log |a_{ij}|, \log |b_{ij}| \mid 1 \leq i, j \leq n \}. \tag{3.1.3}
\]

There is a positive real number \(d \) such that

\[
\delta_0(a)^{\frac{1}{2}} \ll \Xi(a) \ll \delta_0(a)^{\frac{1}{2}} \varsigma(a)^d, \quad a \in A^+_0. \tag{3.1.4}
\]

Now let \(\pi \) be an irreducible admissible tempered representation of \(G \). Let \(\Phi \) be a smooth matrix coefficient of \(G \). Then there is a constant \(B \) such that

\[
|\Phi(g)| \ll \Xi(g)^{\varsigma(g)^B}. \tag{3.1.5}
\]

This is classical and is called the weak inequality when \(\Phi \) is \(K \)-finite and due to [44] when \(\Phi \) is smooth.

We finally assume that \(G = \text{Mp}(2n) \). This is not an algebraic group, but it behaves in many ways like an algebraic group. In particular, we have a Cartan decomposition for \(G \), i.e. \(G = KA^+_G K \) where \(K \) is the inverse image of a special maximal compact subgroup of \(\text{Sp}(2n) \) (e.g. \(\text{Sp}(2n)(\mathfrak{o}_F) \) if \(F \) is nonarchimedean and \(\text{U}(n) \) is \(F \) is archimedean) and \(A^+_G \) is the inverse image of \(A^+_\text{Sp}(2n) \) in \(G \). We define \(\Xi_G = \Xi_{\text{Sp}(2n)} \circ p \) where \(p : G \to \text{Sp}(2n) \) is the canonical projection. Then the weak inequality holds for tempered representations of \(G \).

3.2. Some estimates.

Lemma 3.2.1. There is a \(d > 0 \), such that

\[
\int_{N_{i+1} \cap G^i} \Xi_G((um)\varsigma(u))^{-d} \, du
\]

is absolutely convergent for all \(m \in G_0 \). Moreover, in this case, there is an \(\beta > 0 \) so that

\[
\int_{N_{i+1} \cap G^i} \Xi_G((um)\varsigma(u))^{-d} \, du \ll \Xi_{G^{i+1}}(m)\varsigma(m)^{\beta}, \quad m \in G_0.
\]

Proof. In the archimedean case, this is [17, § 10, Lemma 2]. In the non-archimedean case, this is [43, Theorem 4.3.20]. \(\square \)
Lemma 3.2.2. There is some constant $c > 0$ so that
\[\Xi_{G_i}(gg') \ll \Xi_{G_i}(g)e^{c \varsigma(g')} \text{.} \]
In particular, if $g = 1$, then we have
\[\Xi(g') \gg e^{-c \varsigma(g')} \text{.} \]

Proof. This can be proved by mimicking the argument in [48, Section 3.3] and [36, Lemma 3.11].

Lemma 3.2.3. Fix a real number D. Then there exists some $\beta > 0$, such that
\[\int_{N_{i+1} \cap G^i} \Xi_{G_i}(um)\varsigma(u)^D du \ll \gamma^\beta \varsigma(m)^\beta \Xi_{G_{i+1}}(m), \quad m \in G^{i+1} \text{.} \]

Proof. We fix some real number b to be determined later. We denote the left hand side of the inequality by I. Then,
\[I = I_{<b} + I_{\geq b} \text{ with} \]
\[I_{<b} = \int_{N_{i+1} \cap G^i} 1_{<b}(u)\Xi_{G_i}(um)\varsigma(u)^D du \]
\[I_{\geq b} = \int_{N_{i+1} \cap G^i} 1_{\geq b}(u)\Xi_{G_i}(um)\varsigma(u)^D du, \]
where $1_{<b}$ is the characteristic function of $\{u \in N_{i+1} \cap G^i \mid \varsigma(u) < b\}$ and $1_{\geq b}$ is the characteristic function of $\{u \in N_{i+1} \cap G^i \mid \varsigma(u) \geq b\}$.

By Lemma 3.2.1, we have
\[I_{<b} \ll b^d \int_{N_{i+1} \cap G^i} 1_{<b}(u)\Xi_{G_i}(um)\varsigma(u)^D du \ll b^d \varsigma(m)^{\beta_1} \Xi_{G_{i+1}}(m), \]
where β_1 is a positive real number and d is a positive real number so that the integral
\[\int_{N_{i+1} \cap G^i} \Xi_{G_i}(um)\varsigma(u)^D du \]
is convergent.

Let $\lambda : N_{i+1} \cap G^i \to F$ be a character defined by $\lambda(n) = q_2(ne_{m_{i-1}}, e_{m_{i-1}})$. Then by [5, Corollary B.3.1], there is an $\epsilon > 0$, such that the integral
\[\int_{N_{i+1} \cap G^i} \Xi_{G_i}(u)e^{\epsilon \varsigma(u)}\varsigma(u)^D(1 + |\lambda(u)|)^{-1} du \]
is convergent. We have \(\Xi_{G^i}(um) \ll e^{\alpha c(m)} \Xi_{G^i}(u) \) for some \(\alpha > 0 \), c.f. Lemma 3.2.2. It follows that

\[
I_{\geq b} \ll e^{\alpha c(m)} \int_{N_{i+1,\gamma} \cap G^i} 1_{\gamma \geq b}(u) \Xi_{G^i}(u) \zeta(u)^D e^{\epsilon_c(u)} (1 + |\lambda(u)|)^{-1} e^{-\epsilon_c(u)} (1 + |\lambda(u)|)^{-1} du
\]

\[
\ll e^{\alpha c(m) - \epsilon b}(1 + e^\gamma) \int_{N_{i+1,\gamma} \cap G^i} 1_{\gamma \geq b}(u) \Xi_{G^i}(u) \zeta(u)^D e^{\epsilon_c(u)} (1 + |\lambda(u)|)^{-1} du
\]

\[
\ll e^{\alpha c(m) - \epsilon b}(1 + e^\gamma) \int_{N_{i+1,\gamma} \cap G^i} \Xi_{G^i}(u) \zeta(u)^D e^{\epsilon_c(u)} (1 + |\lambda(u)|)^{-1} du
\]

\[
\ll e^{\alpha c(m) - \epsilon b}(1 + e^\gamma).
\]

There is a constant \(c > 0 \), such that \(\Xi_{G^{i+1}}(m) \gg e^{-\epsilon c(m)} \), then we have

\[
I \ll b^d \Xi_{G^{i+1}}(m) \zeta(m)^{\beta_1} + e^{(\alpha + c) \epsilon_c(m) - \epsilon b}(1 + e^\gamma) \Xi_{G^{i+1}}(m).
\]

We may thus choose \(b = e^{-1}(\log(1 + e^\gamma) + (\alpha + c) \epsilon_c(m)) \) and get

\[
I \ll (e^{-d} \zeta(m)^{\beta_1}(\gamma + (\alpha + c) \epsilon_c(m))^{d} + 1) \Xi_{G^{i+1}}(m).
\]

Note that \(\alpha, \beta_1, d \) and \(c \) are constants which are independent of \(\gamma \) or \(m \). We therefore conclude that there is some \(\beta > 0 \), such that

\[
I \ll \gamma^\beta \zeta(m)^{\beta} \Xi_{G^{i+1}}(m).
\]

This proves the lemma. \(\square \)

Lemma 3.2.4. Fix a real number \(D \). Then there is some \(\beta > 0 \) such that

\[
\int_{N_{i+1,\gamma} \cap G^i} \Xi_{G^i}(um) \zeta(u)^D du \ll \zeta(m)^{\beta} \Xi_{G^{i+1}}(m), \quad m \in G^{i+1}.
\]

Proof. Choose a subgroup \(N^\dagger \) of \(N_{i+1} \cap G^i \) so that the multiplication map \(N^\dagger \times (N_{i+1,\gamma} \cap G^i) \rightarrow N_{i+1} \cap G^i \) is an isomorphism. Recall that \(\Xi_{G^i} \) is itself a matrix coefficient of a (unitary) tempered representation which we temporarily denote by \(e \). Thus \(\Xi_{G^i}(g) = \langle e(g)v, v' \rangle \) where \(\langle \cdot, \cdot \rangle \) is the inner product on \(e \) and \(v, v' \in e \). It follows from the Dixmier–Milliavin theorem [7] that \(v' \) is a finite linear combination of the elements of the form

\[
\int_{N^\dagger} f(n) e(n^{-1}) v' dn,
\]

where \(f \in C_c^\infty(N^\dagger) \). Thus \(\Xi_{G^i} \) is a finite linear combination of the functions of the form

\[
g \mapsto \int_{N^\dagger} f(n) \Phi(ng) dn,
\]

where \(f(n) \) is a compactly supported function on \(N^\dagger \) and \(\Phi \) is a smooth matrix coefficient of a tempered representation of \(G^i \), namely \(e \). The lemma then follows from Lemma 3.2.3. \(\square \)
Lemma 3.2.5. Let f be a nonnegative function on L^* such that $P(x)f(x)$ is bounded for any polynomial function $P(x)$ on L^* (e.g. f is compactly supported). Let $p : H \times G_0 \to L^*$ be the projection given by

$$hg_0 \mapsto \sum_{i=1}^n q_2(hg_0 e_{n+1}^*, e_i^*).$$

Then there is a real number B such that

$$\int_H \Xi_{G_1}(hg_0) f(p(hg_0)) dh \ll \Xi_{G_0}(g_0) \zeta(g_0)^B, \quad g_0 \in G_0.$$
Therefore
\[\int_{H,\gamma} \Xi_{G_1}(hd(a))f(ha)dh \ll \Xi_{G_0}(d(a))\varsigma(d(a))^D. \]
The desired estimate then follows. \qed

Lemma 3.2.6. Let Φ be a smooth matrix coefficient of a tempered representation π of G_2. Then the limit
\[\lim_{\gamma \to \infty} \int_{N_{r-1,\gamma}} \Phi(ng)\overline{\psi_{r-1}(n)}dn, \quad g \in G_2 \]
exists and defines a continuous function in ψ_{r-1} (for a fixed g). If F is non-archimedean, then the integral is in fact a constant for sufficiently large γ. Moreover if $g \in G_1$, then
\[\left| \lim_{\gamma \to \infty} \int_{N_{r-1,\gamma}} \Phi(ng)\overline{\psi_{r-1}(n)}dn \right| \ll \Xi_{G_1}(g)\varsigma(g)^D. \]

Proof. First recall that N_{r-1} is the unipotent subgroup of some parabolic subgroup P_{r-1} of G_2, the Levi part being isomorphic to $G_1 \times GL_r^{-1}$. Put $T = GL_r^{-1}$ and denote an element in T by $a = (a_1, \ldots, a_{r-1})$ where $a_i \in F^\times$.

If F is non-archimedean, the constancy of the integral when γ is large can be proved in the same way as [48, Lemma 3.5]. In fact, suppose that $\Phi(g) = \langle \pi(g)v, v' \rangle$ where $v \in \pi$, $v' \in \pi'$ and $\langle -,- \rangle$ stands for the pairing between π and its contragradient π'. Suppose that K' is an open compact subgroup of G_2 such that v and v' are fixed by K'. Let $K'' = K' \cap gK'g^{-1}$. This is an open compact subgroup of G_2. Let $c > 0$ and T_c be the subgroup of T consisting of elements $a = (a_1, \ldots, a_{r-1})$ so that $|a_i - 1| \leq e^{-c}$ for all i. The intersection $T \cap K''$ is an open subgroup of T. Moreover $\pi(g)v$ and v' are both fixed by $T \cap K''$. Thus there is some $c(g) > 0$ depending on g, and $c(g) \simeq \varsigma(g)$, such that $\pi(g)v$ and v' are fixed by $T_{c(g)}$. We have
\[\int_{N_{r-1,\gamma}} \Phi(g)\overline{\psi_{r-1}(n)}dn = \int_{N_{r-1,\gamma}} \int_{T_{c(g)}} \langle \pi(a^{-1}nag)v, v' \rangle \overline{\psi_{r-1}(n)}d\alpha dn \]
\[= \int_{N_{r-1,\gamma}} \langle \pi(nag)v, v' \rangle \left(\int_{T_{c(g)}} \overline{\psi_{r-1}(ana^{-1})}d\alpha \right) dn. \]
There is some $c'(g)$, $c'(g) \simeq \varsigma(g)$, so that if $\gamma > c'(g)$ and $n \in N_{r-1,\gamma}\backslash N_{r-1,c'(g)}$, then the inner integral vanishes. It follows that if $\gamma > c'(g)$, then
\[\int_{N_{r-1,\gamma}} \Phi(g)\overline{\psi_{r-1}(n)}dn = \int_{N_{r-1,c'(g)}} \Phi(g)\overline{\psi_{r-1}(n)}dn. \]
It also follows, by Lemma 3.2.3, that if $\gamma > c'(g)$, then there is some $D > 0$ so that
\[\left| \int_{N_{r-1,\gamma}} \Phi(g)\overline{\psi_{r-1}(n)}dn \right| \ll c'(g)^D\Xi_{G_1}(g)\varsigma(g)^D, \quad g \in G_1. \]
As $c'(g) \simeq \varsigma(g)$, we get the desired estimate (possibly for some larger D). This proves the lemma in the non-archimedean case.
From now on we assume that F is archimedean.

To simplify notation, we put

$$I(\gamma, g, \Phi) = \int_{N_{r-1, \gamma}} \Phi(n g) \overline{\psi_{r-1}(n)} dn, \quad g \in G_1.$$

Note that to prove the limit exists, we may even assume that $g = 1$. By the Dixmier–Malliavin theorem, it is enough to prove the lemma for $\lim_{\gamma \to \infty} I(\gamma, g, f \ast \Phi)$ where $f \in \mathcal{C}_c^\infty(T)$ and

$$f \ast \Phi(g) = \int_T f(t) \Phi(t^{-1} gt) dt$$

is a function on G_2. When there is no confusion, we write $I(\gamma) = I(\gamma, g, f \ast \Phi)$ for short.

Let $(x_1, \cdots, x_{r-1}) \in F^{r-1}$ and $n(x_1, \cdots, x_{r-1}) \in N_{r-1}$ so that $n(x_1, \cdots, n_{r-1}) e_{n+i}^* = e_{n+i} + x_{i-1} e_{n+i-1}^*$ for $i = 2, \cdots, r$. Let $N_{r,} = \{ n(x_1, \cdots, x_{r-1}) \mid (x_1, \cdots, x_{r-1}) \in F^{r-1} \}$. It is a subgroup of N_{r-1} which is stable under the conjugation by T and the multiplication map $N_{r,} \times N_{r-1, \infty} \to N_{r-1}$ is an isomorphism. Let $N_{r, \gamma} = N_{r,} \cap N_{r-1, \gamma}$. We denote by $\hat{N}_{r, \gamma}^\text{reg}$ the open subset consisting of generic characters. Then $\psi_{r-1} \in \hat{N}_{r, \gamma}^\text{reg}$. Let ψ^t be the character of $N_{r,}$ defined by $\psi^t(n) = \psi_{r-1}(t n t^{-1})$. The map $t \mapsto \psi^t$ defines a homeomorphism from T to $\hat{N}_{r, \gamma}^\text{reg}$. A compactly supported function on T is then identified with a compactly supported function on $\hat{N}_{r, \gamma}^\text{reg}$. We may thus talk about the Fourier transform of f, which is a Schwartz function on $N_{r,}$. Let $t_1, \cdots, t_{r-1} \in F^\times$ and $t \in T$ so that

$$tn(x_1, \cdots, x_{r-1})t^{-1} = n(t_1 x_1, \cdots, t_{r-1} x_{r-1}).$$

The measure $|t_1 \cdots t_{r-1}| dt$ is, up to a positive constant, the restriction of the self-dual measure of \hat{N} to $\hat{N}_{r, \gamma}^\text{reg}$ under this homeomorphism. We may assume that the constant is one.

We have

\begin{equation}
I(\gamma) = \int_{N_{r-1, \gamma}} \int_T f(t) \Phi(t^{-1} nt g) \overline{\psi_{r-1}(n)} dt dn
= \int_{N_{r-1}} \int_T f(t) 1_{N_{r-1, \gamma}}(n) \Phi(t^{-1} nt g) \overline{\psi_{r-1}(n)} dt dn
= \int_{N_{r-1}} \left(\int_T f(t) 1_{N_{r-1, \gamma}}(ntt^{-1}) \overline{\psi^t(n)} dt \right) \left(\int_{N_{r-1, \infty}} \Phi(nn' g) dn' \right) dn,
\end{equation}

where in the last identity, we have made the change of variable $n \mapsto tnt^{-1}$ and split the integral over N_{r-1} as a double integral over $N_{r,} \times N_{r-1, \infty}$.

We claim that there is a constant C which does not depend on γ so that

\begin{equation}
\left| \int_T f(t) 1_{N_{r-1, \gamma}}(ntt^{-1}) \overline{\psi^t(n)} dt \right| \leq C \prod_{i=1}^{r-1} \max\{ 1, |x_i| \}^{-1},
\end{equation}

where $n = n(x_1, \cdots, x_{r-1}) \in N_{r,}$. In fact, we integrate $t_i \in F^\times$ with $|x_i| \leq 1$ via integration by parts. The anti-derivative of $1_{\{|x| \leq e^\gamma\}}(xt) \overline{\psi(x)}$ is a function of the form $|x|^{-1} X_\gamma(x)$ where X_γ
is bounded by a constant independent of γ. It then follows that
\[
\int_T f(t) 1_{N_t,\gamma}(tnt^{-1})\psi(t)dt = \int_{T^{r-1}} \prod_{i=1}^{r-1} |x_i|^{-1} X_\gamma(x_i t_i) \partial f_1(t_1, \ldots, t_{r-1})dt,
\]
where $f_1(t_1, \ldots, t_{r-1}) = f(t_1, \ldots, t_{r-1})|t_1 \cdots t_{r-1}|^{-1}$ and ∂f_1 is the partial derivative of f_1 with respect to all t_i such that $|x_i| \leq 1$. As f, so f_1, are in $C_c^\infty(T)$, and X_γ is bounded by a constant independent of γ, the desired estimate (3.2.2) follows.

By [5, Corollary B.3.1], the integral
\[
\int_{N_t \cap N_{T^{r-1}} \cap \mathbb{R}^{-1}} \prod_{i=1}^{r-1} \max\{1, |x_i|\}^{-1} \Phi(n(x_1, \ldots, x_{r-1})n'g)dn'dn
\]
is convergent. By the Lebesgue dominated convergence theorem, we have
\[
\lim_{\gamma \to \infty} I(\gamma) = \int_{N_t} \int_{T^{r-1}} \prod_{i=1}^{r-1} \max\{1, |x_i|\}^{-1} \Phi(n(x_1, \ldots, x_{r-1})n'g)dn'dn
\]
\[
= \int_{N_t} \int_{N_{T^{r-1}} \cap \mathbb{R}^{-1}} \hat{f}_1(n) \Phi(nn'g)dn'dn.
\]
The rest of the assertions of the lemma follow easily from this expression. \square

3.3. Proof of Proposition 2.2.1. The case $r = 0$ is rather straightforward. Indeed, in this case $G_0 = G_1 = G_2$. By the weak inequality, we only need to prove that
\[
\int_{G_0} \Xi_{G_0}(g)^2 |\Phi_{\phi,\phi'}(g)| dg
\]
is absolutely convergent. By the Cartan decomposition and the estimates (3.1.2) and (3.1.4), the convergence is reduced to the convergence of
\[
\int_{|a_n| \leq \cdots \leq |a_1| \leq 1} \left|a_1 \cdots a_n \right|^{\frac{1}{2}} \left(- \sum_{i=1}^{n} \log |a_i| \right)^D da_1 \cdots da_n.
\]
This is clear. Proposition 2.2.1 is thus proved when $r = 0$.

The case $r \geq 2$ follows from the case $r = 1$ by Lemma 3.2.6.

We now treat the case $r = 1$. In this case $G_2 = G_1$. The defining integral of α reduces to
\[
\alpha(\varphi_2, \varphi_2', \varphi_0, \varphi_0', \phi, \phi') = \int_{G_0} \int_{H} \Phi_{\phi,\phi'}(hg_0)\Phi_{\varphi_0,\varphi_0'}(g_0)\overline{\Phi_{\phi,\phi'}(h)\Phi_{\varphi_0,\varphi_0'}(g_0)}dhdg_0,
\]
Since π_2 and π_0 are both tempered, we need to prove that
\[
\int_{G_0} \int_{H} \Xi_{G_1}(hg_0)\Xi_{G_0}(g_0) |\Phi_{\phi,\phi'}(hg_0)| dh dg_0
\]
is convergent.
Let \(g_0 = k_1 d(a)k_2 \) be the Cartan decomposition of \(g_0 \) where \(a = (a_1, \cdots, a_n) \in (F^\times)^n \) with \(|a_s| \leq \cdots \leq |a_1| \leq 1 \). We first estimate \(|\Phi_{\phi,\phi^\vee}(hd(a))| \). We claim that there is a function \(f \) on \(L^* \) so that \(f(l^*)P(l^*) \) is bounded for any polynomial function \(P \) on \(L^* \), such that

\[
|\Phi_{\phi,\phi^\vee}(h(l + l^*, t) d(a))| \ll |\det a|^{\frac{1}{2}} f(l^* a).
\]

Indeed

\[
|\Phi_{\phi,\phi^\vee}(h(l + l^*, t) d(a))| \leq |\det a|^{\frac{1}{2}} \int_{L^*} |\phi(x a + l^* a)\phi^\vee(x)| dx.
\]

Thus to prove (3.3.1), it is enough to prove that for any polynomial function \(P \) on \(L^* \),

\[
\sup_{y \in L^*} |P(y)| \int_{L^*} |\phi(x a + y)\phi^\vee(x)| dx < \infty.
\]

We have

\[
\sup_{y \in L^*} |P(y)| \int_{L^*} |\phi(x a + y)\phi^\vee(x)| dx \leq \int_{L^*} \left(\sup_{y \in L^*} |P(y)\phi(x a + y)| \right) |\phi^\vee(x)| dx.
\]

Since \(P \) is a polynomial function, we may choose a sufficiently large \(N \), such that

\[
\sup_{y \in L^*} |P(y)\phi(x a + y)| \ll (1 + |x_1 a_n| + \cdots |x_n a_1|)^N \leq (1 + |x_1| + \cdots |x_n|)^N,
\]

where \(x = (x_1, \cdots, x_n) \in L^* \). We have the second inequality because \(|a_i| \leq 1 \) for all \(i \). Then

\[
\int_{L^*} \left(\sup_{y \in L^*} |P(y)\phi(x a + y)| \right) |\phi^\vee(x)| dx \ll \int_{L^*} (1 + |x_1| + \cdots |x_n|)^N |\phi^\vee(x)| dx < \infty.
\]

We have thus proved (3.3.1).

By (3.1.1), to prove the convergence of the defining integral of \(\alpha \), it is enough to show the convergence of

\[
\int_{A^c G_0} \int_H \Xi_{G_1}(h(l + l^*, t) d(a))\Xi_{G_0}(d(a))\delta_{P_n \cap G_0}(d(a))|\det a|^{\frac{1}{2}} f(l^* a) dh da.
\]

Then Lemma 3.2.5 reduces the convergence of this integral to the case \(r = 0 \).

3.4. Proof of Proposition 2.2.2.

We are going to use the notation in the proof of Lemma 3.2.6, one paragraph before (3.2.1). To simplify notation, we write \(\Phi_{\phi, i} = \Phi_{\phi, i, \phi^\vee}, i = 0, 2 \) and \(\Phi_\phi = \Phi_{\phi, \phi^\vee} \).

To facilitate understanding, we divide the proof into several steps.

Step 1. The goal is to reduce the Proposition to the inequality (3.4.1)

In order to prove that \(\alpha(\phi_2, \phi_0, \phi) \geq 0 \), it is enough to show that for any function \(f \in C_c^\infty(T) \), we have

\[
\int_T \int_{G_0} \int_H \left(\lim_{\gamma \to \infty} \int_{N_{r-1, \gamma}} \Phi_{\phi_2}(n h g_0) \overline{\psi_{r-1}(t n t^{-1})} dn \right) \Phi_{\phi_0}(g_0) \overline{\Phi_\phi(h g_0)} f(t) \overline{f(l)} dh dg_0 dt \geq 0.
\]
We denote this expression by I. Since $f(t)$ is compactly supported, by Fubini’s theorem, we have

$$I = \int_{G_0} \int_H \left(\int_T \lim_{\gamma \to \infty} \int_{N_{r-1,\gamma}} \Phi_{\varphi_2}(nhg_0) f(t) \overline{f(t) \psi_{-1}(tnt^{-1})} dnt \right) \Phi_{\varphi_0}(g_0) \Phi_{\hat{\phi}}(hg_0) dhdg_0.$$

We denote the integral in the parentheses by II. It follows from Lemma 3.2.6 that

$$\lim_{\gamma \to \infty} \int_{N_{r-1,\gamma}} \Phi_{\varphi_2}(nhg_0) \overline{\psi_{-1}(tnt^{-1})} dn$$

is bounded by a constant which depends continuously on ψ_{-1}. Since f is compactly supported on T, we can choose this constant to be independent of t (but depends on hg_0). Then by the Lebesgue dominated convergence theorem, we have

$$II = \lim_{\gamma \to \infty} \int_T \int_{N_{r-1,\gamma}} \Phi_{\varphi_2}(nhg_0) f(t) \overline{f(t) \psi_{-1}(tnt^{-1})} dnt dt.$$

Moreover, the double integral on the right hand side is absolutely convergent. We can thus interchange the order of integration. Finally we conclude that

$$II = \lim_{\gamma \to \infty} \int_{N_{r-1,\gamma}} \int_T \Phi_{\varphi_2}(nhg_0) f(t) \overline{f(t) \psi_{-1}(tnt^{-1})} dtdn.$$

Let $f_1(t) = f(t)|t_1 \cdots t_{r-1}|^{\frac{3}{2}} \in C_c^\infty(T)$. Recall that the map $t \mapsto \psi^t$ identifies T with $\hat{\mathcal{N}}_{\hat{t}}$ which is an open subset of $\hat{\mathcal{N}}_{\hat{t}}$ consisting of generic characters. The measure $|t_1 \cdots t_{r-1}| dt$ is identified with the self-dual measure on $\hat{\mathcal{N}}_{\hat{t}}$ under this map. In this way, f, as well as f_1, are viewed as compactly supported functions on $\hat{\mathcal{N}}_{\hat{t}}$ and we may talk about their Fourier transform \hat{f} and \hat{f}_1 which are functions on $\mathcal{N}_{\hat{t}}$. The Fourier transform of a product of two functions is the convolution of the Fourier transforms of these two functions. We conclude that

$$\int_T f(t) \overline{f(t) \psi_{-1}(tnt^{-1})} dt = \int_{\mathcal{N}_{\hat{t}}} \hat{f}_1(n_1n_2) \hat{f}_1(n_2) dn_2.$$

Therefore

$$II = \lim_{\gamma \to \infty} \int_{\mathcal{N}_{\hat{t}}} \int_{N_{r-1,\gamma}} \int_{N_{\hat{t}}} \Phi_{\varphi_2}(n_1 n'hg_0) \hat{f}_1(n_1n_2) \hat{f}_1(n_2) dn_2 dn' dn_1$$

$$= \int_{\mathcal{N}_{\hat{t}}} \int_{\mathcal{N}_{\hat{t}}} \int_{N_{r-1,\gamma}} \Phi_{\varphi_2}(n_1 n_2^{-1} n'hg_0) \hat{f}_1(n_1) \hat{f}_1(n_2) dn_2 dn' dn_1$$

$$= \int_{N_{r-1,\gamma}} \Phi_{\pi_2(f_1) \varphi_2}(n'hg_0) dn',$$

where $\pi_2(\hat{f}_1) \varphi_2 = \int_{\mathcal{N}_{\hat{t}}} \hat{f}_1(n) \pi_2(n) \varphi_2 dn$. This expression makes sense since \hat{f}_1 is a Schwartz function on $\mathcal{N}_{\hat{t}}$. Thus to show that $I \geq 0$, it remains to show that

$$\int_{G_0} \int_H \int_{N_{r-1,\gamma}} \Phi_{\pi_2(f_1) \varphi_2}(n'hg_0) \Phi_{\varphi_0}(g_0) \Phi_{\hat{\phi}}(hg_0) dndh dhdg_0 \geq 0.$$
Actually, we will show that

\[(3.4.1) \quad \int_{G_0} \int_H \int_{N_{r-1,-\infty}} \Phi_{\varphi_2}(n'hg_0)\Phi_{\varphi_0}(g_0)\Phi_\phi(hg_0)dn'dhdg_0 \geq 0,\]

for all smooth vectors \(\varphi_2 \in \pi_2\) and \(\varphi_0 \in \pi_0\). Unlike the proof of [24, Proposition 1.1] and [36, Theorem 2.1(2)], we cannot apply [20, Theorem 2.1] directly, as \(G_2 \times HG_0\) is not reductive. However, we are going to mimic the proof of [20, Theorem 2.1] to prove (3.4.1).

Step 2. The goal is to reduce (3.4.1) to the case of \(K\)-finite vectors.

We claim that it is enough to prove (3.4.1) for a \(K_2\)-finite (resp. \(K_0\)-finite) vector \(\varphi_2 \in \pi_2\) (resp. \(\varphi_0 \in \pi_0\)). This is only an issue when \(F\) is archimedean. So we assume temporarily that \(F\) is archimedean. Since \(K_2\)-finite vectors are dense in the space of smooth vectors in \(\pi_2\), we may choose a sequence of \(K_2\)-finite vectors \(\varphi_2^{(i)}\) which is convergent to \(\varphi_2\). It follows that \(\Phi_{\varphi_2}\) is approximated pointwisely by \(\Phi_{\varphi_2^{(i)}}\). Moreover by [44], there exists an element \(X\) in the Lie algebra of \(G_2\), which depends on \(K_2\) only, such that

\[\Phi_{\varphi_2^{(i)}}(g_2) \leq B_{\pi_2}(\pi_2(X)\varphi_2^{(i)}, \pi_2(X)\varphi_2^{(i)}) \Xi_{G_2}(g_2) = |\pi_2(X)\varphi_2^{(i)}|^2 \Xi_{G_2}(g_2).\]

Since \(\varphi_2^{(i)}\) is convergent to \(\varphi_2\), we see that \(|\pi_2(X)\varphi_2^{(i)}|^2\) is convergent to \(|\pi_2(X)\varphi_2|^2\). In particular, it is bounded by some constant which is independent of \(\varphi_2^{(i)}\). Similarly we choose a sequence \(\varphi_0^{(i)}\) of \(K_0\)-finite vectors in \(\pi_0\) which approximate \(\varphi_0\). Since

\[\int_{G_0} \int_H \int_{N_{r-1,-\infty}} \Xi_{G_2}(n'hg_0)\Xi_{G_0}(g_0)\Phi_\phi(hg_0)dn'dhdg_0\]

is absolutely convergent, by the Lebesgue dominated convergence theorem

\[\int_{G_0} \int_H \int_{N_{r-1,-\infty}} \Phi_{\varphi_2}(n'hg_0)\Phi_{\varphi_0}(g_0)\Phi_\phi(hg_0)dn'dhdg_0 = \lim_{i \to \infty} \int_{G_0} \int_H \int_{N_{r-1,-\infty}} \Phi_{\varphi_2^{(i)}}(n'hg_0)\Phi_{\varphi_0^{(i)}}(g_0)\Phi_\phi(hg_0)dn'dhdg_0.\]

So the positivity in (3.4.1) for smooth vectors follows from the positivity for \(K\)-finite vectors.

From now on, we assume that \(\varphi_2\) and \(\varphi_0\) in (3.4.1) are \(K_2\)-finite and \(K_0\)-finite respectively. We come back to the situation \(F\) being an arbitrary local field of characteristic zero.

Step 3. The goal is to reduce (3.4.1) to the inequality (3.4.2).

Since \(\pi_2\) is tempered, by (the proof of) [20, Theorem 2.1] (which is also valid when \(F\) is non-archimedean), one can find a sequence of compactly supported continuous functions \(f_{2,j}^{(i)}\) on \(G_2\) and a sequence of positive real numbers \(a_j^{(i)}\), \(j = 1, \ldots, s_i\), such that \(\sum_{j=1}^{s_i} a_j^{(i)} = 1\) and the functions

\[g_2' \mapsto A^{(i)}(g_2') = \sum_{j=1}^{s_i} a_j^{(i)} \int_{G_2} f_{2,j}^{(i)}(g_2g_2')f_{2,j}^{(i)}(g_2)dg_2\]

23
approximate $\Phi_{\psi_2}(g'_2)$ pointwisely. Moreover, there is a constant C_2, such that

$$|A^{(i)}(g'_2)| \leq C_2 \Xi_{G_2}(g'_2).$$

Similarly, we can find a sequence of compactly supported continuous functions $f_{0,j}^{(i)}$ on G_0 and a sequence of positive real numbers $b_j^{(i)}$, $j = 1, \ldots, k_i$, such that $\sum_{j=1}^{k_i} b_j^{(i)} = 1$ and the functions

$$g'_0 \mapsto B^{(i)}(g'_0) = \sum_{j=1}^{k_i} b_j^{(i)} \int_{G_0} f_{0,j}^{(i)}(g_0 g'_0) \overline{f_{0,j}^{(i)}(g_0)} dg_0$$

approximate $\Phi_{\psi_0}(g'_0)$ pointwisely. Moreover, there is a constant C_0, such that

$$|B^{(i)}(g'_0)| \leq C_0 \Xi_{G_0}(g'_0).$$

Since the integral

$$\int_{G_0} \int_{H} \int_{N_{r-1,-\infty}} \Xi_{G_2}(n'h g_0) \Xi_{G_0}(g_0) \Phi_{\psi}(h g_0) dn' dh dg_0$$

is absolutely convergent, by the Lebesgue dominated convergence theorem, to prove (3.4.1), it is enough to prove that for any i, j,

$$\int_{G_0} \int_{H} \int_{N_{r-1,-\infty}} \left(\int_{G_0} f_{2,j}^{(i)}(g_2) f_{2,j}^{(i)}(g_2) \, dg_2 \right) \left(\int_{G_0} f_{0,j}^{(i)}(g_0 g'_0) \overline{f_{0,j}^{(i)}(g_0)} \, dg_0 \right) \Phi_{\psi}(h g_0) dn' dh dg'_0 \geq 0. \tag{3.4.2}$$

We denote the left hand by Q. Note that this integral is absolutely convergent. To simplify notation, we write $f_2 = f_{2,j}^{(i)}$ and $f_0 = f_{0,j}^{(i)}$.

\textbf{Step 4.} Proof of (3.4.2).

We can write the inner product on $S(L^*)$ as

$$B_{\omega_{\psi}}(\phi, \phi') = \int_{L^* + F \setminus H} \omega_{\psi}(h') \overline{\omega_{\psi}(h')} \phi(0) \phi'(0) dh'.$$

Using this expression of the inner product, we have

$$Q = \int_{G_0} \int_{H} \int_{N_{r-1,-\infty}} \left(\int_{G_2} f_2(g_2 n' h g_0) \overline{f_2(g_2)} \, dg_2 \right) \left(\int_{G_0} f_0(g_0 g'_0) \overline{f_0(g_0)} \, dg_0 \right) \left(\int_{L^* + F \setminus H} \omega_{\psi}(h' g_0) \phi(0) \omega_{\psi}(h') \phi(0) \, dh' \right)
+ \left(\int_{L^* + F \setminus H} \omega_{\psi}(h' g_0) \phi(0) \omega_{\psi}(h') \phi(0) \, dh' \right) \, dn' dh dg_0' \geq 0.$$

Note that we have used the fact that the pairing $B_{\omega_{\psi}}$ is G_0-invariant.
We make the following change of variables
\[g'_0 \mapsto g_0^{-1}g'_0, \quad h \mapsto g_0^{-1}h'^{-1}hg_0, \quad n' \mapsto g_0^{-1}h'^{-1}n'h'_0g_0, \quad g_2 \mapsto g_2h'_0. \]

Then
\[
Q = \int_{G_2/(N_{r-1,-\infty} \times (L+F))} \int_{N_{r-1,-\infty}} \int_{H} \int_{G_0} f_2(g_2nhg_0)f_0(g_0)\overline{\omega_{\psi,\mu}(hg_0)}\phi(0)dg_0dhdhn'dg_2,
\]
where \(L + F \) embeds in \(H \times H \) diagonally.

Finally we decompose the integral over \(G_2 \) as
\[
\int_{G_2/(N_{r-1,-\infty} \times (L+F))} \int_{N_{r-1,-\infty}} \int_{L+F}.
\]
We conclude that
\[
Q = \left| \int_{G_2/(N_{r-1,-\infty} \times (L+F))} \int_{N_{r-1,-\infty}} \int_{H} \int_{G_0} f_2(g_2nhg_0)f_0(g_0)\overline{\omega_{\psi,\mu}(hg_0)}\phi(0)dg_0dhdhn'dg_2 \right|^2 dg_2 \geq 0.
\]

We have thus proved (3.4.2) and hence Proposition 2.2.2.

3.5. **Regularization via stable unipotent integral.** In this subsection, we give an alternative but equivalent way to define the linear functional \(\alpha \) when \(F \) is non-archimedean following [29,36]. This definition is better for the unramified computation and is valid for nontempered representations. In this subsection, \(F \) is always assumed to be non-archimedean.

Let \(N \) be a unipotent group over \(F \) and \(f \) a smooth function on \(N \). We say that \(f \) is compactly supported on average if there are compact subsets \(U \) and \(U' \) of \(N \), such that \(L(\delta_{U'})R(\delta_U)f \) is compactly supported. Here \(\delta_U \) stands for the Dirac measure on \(U \), i.e. \(\delta_U = (\text{vol} U)^{-1}1_U \), and
\[
L(\delta_{U'})R(\delta_U)f(n) = \int_{N} \int_{N} \delta_{U'}(u')\delta_U(u)f(u'nu)du'du.
\]
If \(f \) is compactly supported on average, we then define
\[
\int_{N}^{st} f(n)dn := \int_{N} L(\delta_{U'})R(\delta_U)f(n)dn.
\]
This is called the stable integral of \(f \) on \(N \). The definition is independent of the choice of \(U \) and \(U' \).

We denote temporarily by \(G \) a reductive group over \(F \). Let \(P_{\text{min}} = M_{\min}N_{\min} \) be a fixed minimal parabolic subgroup of \(G \). Let \(P = MN \supset P_{\text{min}} \) be a parabolic subgroup of \(G \). Let \(\Psi \) be a *generic* character of \(N \), i.e. the stabilizer of \(\Psi \) in \(M_{\min} \) is the center of \(M_{\min} \). Let \(\pi \) be an irreducible admissible representation of \(G \) and \(\Phi \) a matrix coefficient of \(\pi \). Then

Proposition 3.5.1 ([36, Proposition 3.3]). *The function \(\Phi|_{N_P} \cdot \Psi \) is compactly supported on average.*
Now let $G = \text{Mp}(2n)$. Then Proposition 3.5.1 still holds. The same proof as in [36, Proposition 3.3] goes through as it uses only the Bruhat decomposition and Jacquet’s subrepresentation theorem, which are valid for G.

Now we retain the notation G_0, G_1, G_2 etc. Let Φ be a matrix coefficient on G_2 (resp. \tilde{G}_2). Define

$$F_{\psi}^\text{st} \Phi(g) = \int_{N_{r-1}} \Phi(gn)\overline{\psi_{r-1}(n)}dn,$$

which is a function on G_2 (resp. \tilde{G}_2). This definition makes sense because of Proposition 3.5.1.

Lemma 3.5.2. Assume that Φ is a matrix coefficient of a tempered representation of G_2 (resp. \tilde{G}_2). Then

$$F_{\psi}^\text{st} \Phi(hg_0) = F_{\psi} \Phi(hg_0), \quad h \in H, g_0 \in G_0, \text{ (resp. } g_0 \in \tilde{G}_0).$$

Proof. By definition,

$$F_{\psi}^\text{st} \Phi_2(hg_0) = \int_{N_{r-1}} \left((\text{vol } U)^{-1} \int_U \Phi(unhg_0)\overline{\psi_{r-1}(un)}du \right)dn,$$

where U is an open compact set of N_{r-1}. The inner integral, as a function of n, is compactly supported. Therefore we may take a sufficiently large γ, such that $N_{r-1, \gamma}$ contains U and the support of the inner integral (as a function of n) and that

$$F_{\psi} \Phi_2(hg_0) = \int_{N_{r-1, \gamma}} \Phi_2(nhg_0)\overline{\psi_{r-1}(n)}dn.$$

It follows that

$$F_{\psi}^\text{st} \Phi_2(hg_0) = \int_{N_{r-1, \gamma}} (\text{vol } U)^{-1} \int_U \Phi(unhg_0)\overline{\psi_{r-1}(un)}dudn,$$

$$= \int_{N_{r-1, \gamma}} \Phi(nhg_0)\overline{\psi_{r-1}(n)}dn \times (\text{vol } U)^{-1} \int_U du$$

$$= F_{\psi} \Phi_2(hg_0),$$

where in the second equality, we have made a change of variable $n \mapsto u^{-1}n$. \qed

Thanks to Lemma 3.5.2, if F is nonarchimedean, then we may use F_{ψ}^st instead of F_{ψ} in the definition of the local linear form α. We will not distinguish F_{ψ}^st and F_{ψ} from now on and write just F_{ψ}.

4. **Unramified computations**

In this section, we assume the conditions prior to Proposition 2.2.3. In particular, F is a non-archimedean local field of residue characteristic different from two. The argument is mostly adapted from [36], except that at the end we use a different trick, which avoids the use of
the explicit formulae of the Whittaker–Shintani functions as in [36, Appendix]. Some of the arguments which are identical to [36] are only sketched.

4.1. Setup. For \(i = 0, 1, 2 \), let \(B_i = P_i \cap G_i = T_i U_i \) be the upper triangular Borel subgroup of \(G_i \) where \(T_i \) is the diagonal maximal torus of \(G_i \). We have a hyperspecial subgroup \(K_i = \text{Sp}(W_i)(\sigma_F) \) of \(\text{Sp}(W_i) \). Recall that the two fold cover \(\widetilde{G}_i \to G_i \) splits uniquely over \(K_i \). We can thus view \(K_i \) as a subgroup of \(\widetilde{G}_i \).

Let \(\Xi \) (resp. \(\bar{\Xi} \)) be an unramified character of \(T_2 \) (resp. \(T_0 \)). In the case \(\text{Sp} \), we consider the unramified principal series \(\pi_2 = I(\Xi) \) of \(G_2 \) and \(\pi_0 = I(\bar{\xi}) \) of \(\widetilde{G}_0 \). In the case \(\text{Mp} \), we consider the unramified principal series \(\pi_2 = I(\Xi) \) of \(\widetilde{G}_2 \) and \(\pi_0 = I(\xi) \) of \(G_0 \).

Note that the unramified principal series representation of the metaplectic group depends on the additive character \(\psi \), even though this is not reflected in the notation. We frequently identify \(\Xi \) with an element in \(\mathbb{C}^n \) which we also denote by \(\Xi = (\Xi_1, \ldots, \Xi_m) \), the correspondence being given by

\[
\Xi(\text{diag}(a_1, \ldots, a_1, a_1^{-1}, \ldots, a_m^1)) = |a_1|^{\Xi_1} \cdots |a_m|^{\Xi_m}
\]

Similarly we identify \(\xi \) with an element in \(\mathbb{C}^n \). The contragredient of \(\pi_2 \) (resp. \(\pi_0 \)) is \(I(\Xi^{-1}) \) (resp. \(I(\bar{\xi}^{-1}) \)). Let \(f_\Xi \in I(\Xi) \), \(f_{\Xi^{-1}} \in I(\Xi^{-1}) \) (resp. \(f_\xi \in I(\xi) \), \(f_{\xi^{-1}} \in I(\xi^{-1}) \)) be the \(K_2 \)-fixed (resp. \(K_0 \)-fixed) elements with \(f_\Xi(1) = f_{\Xi^{-1}}(1) = 1 \) (resp. \(f_\xi(1) = f_{\xi^{-1}}(1) = 1 \)). Let

\[
\Phi_{\Xi}(g_2) = \int_{K_2} f_\Xi(k_2g_2)dk_2, \quad \Phi_\xi(g_0) = \int_{K_0} f_\xi(k_0g_0)dk_0, \quad \Phi_{\phi}(h_0) = \int_{L^*(\sigma_F)} \omega_\phi(h_0)1_{L^*(\sigma_F)}(x)dx.
\]

Then \(\alpha(f_\Xi, f_{\Xi^{-1}}, f_\xi, f_{\xi^{-1}}, \phi, \phi) = I(1, \Xi, \xi, \psi) \).

Let \(J = H \times G_0 \) and \(\bar{J} = \widetilde{H} \times \widetilde{G}_0 \). We define the Borel subgroup \(B_J \) (resp. \(B_{\bar{J}} \)) of \(J \) (resp. \(\bar{J} \)) as a subgroup of \(J \) (resp. \(\bar{J} \)) consisting of elements of the form \(hh_0 \) where \(h_0 \in B_0 \) (resp. \(\bar{B}_0 \)), the inverse image of \(B_0 \) in \(\widetilde{G}_0 \) and \(h \in H \) is of the form \(h(l, t), l \in L \). We define the unramified principal series representation of \(J \) (resp. \(\bar{J} \)) as

\[
I^J(\xi, \psi) = \{ f \in C^\infty(J) \mid f(h(l, t)b_0h_0) = \delta_{B_J}^1(b_0)\xi(b_0)\psi(t)f(h_0) \},
\]

resp.

\[
I^{\bar{J}}(\xi, \psi) = \{ f \in C^\infty(\bar{J}) \mid f(h(l, t)b_0h_0) = \delta_{B_{\bar{J}}}^{\frac{1}{2}}(b_0)\xi_\psi(b_0)\bar{\psi}(t)f(h_0) \},
\]

where \(\xi_\psi(b_0) = \xi(\text{diag}[t_n, \cdots, t_1, t_1^{-1}, \cdots, t_n^{-1}])\chi_\psi(t_1 \cdots t_n) \) and \(t_n, \cdots, t_1, t_1^{-1}, \cdots, t_n^{-1} \) are diagonal entries of \(b_0 \).

The group \(J \) (resp. \(\bar{J} \)) acts on \(I^J(\xi, \psi) \) (resp. \(I^{\bar{J}}(\xi, \psi) \)) via the right translation. Let \(K_J = J \cap K_1 \). There is a canonical \(J \) (resp. \(\bar{J} \))-invariant pairing given by

\[
B_J(f, f') = \int_{L^*} \int_{K_0} f(h(l^*, 0)b_0)f'(h(l^*, 0)b_0)dk_0dl^*.
\]

27
where \(f \in I^I(\xi, \overline{\psi}), f' \in I^I(\xi^{-1}, \psi) \) (resp. \(f \in I^I(\xi, \overline{\psi}), f' \in I^I(\xi^{-1}, \psi) \)).

In the case \(\text{Mp} \), there is a canonical inner product preserving isomorphism

\[
\omega_{\overline{\psi}} \otimes I(\xi) \rightarrow I^I(\xi, \overline{\psi}), \quad \phi \otimes f_\xi \rightarrow f_{\xi, \overline{\psi}},
\]

where \(f_{\xi, \overline{\psi}}(hg_0) = \omega_{\overline{\psi}}(hg_0)\phi(0)f_\xi(g_0), \ h \in H \) and \(g_0 \in \widetilde{G}_0 \). In the case \(\text{Sp} \), there is a canonical inner product preserving isomorphism

\[
\omega_{\overline{\psi}} \otimes I(\xi) \rightarrow I^I(\xi, \overline{\psi}), \quad \phi \otimes f_\xi \rightarrow f_{\xi, \overline{\psi}},
\]

where \(f_{\xi, \overline{\psi}}(hg_0) = \omega_{\overline{\psi}}(hu(g_0))\phi(0)f_\xi(i(g_0)) \). Analogues isomorphism also holds in the case \(\text{Mp} \).

For the ease of the exposition, we slightly modify our notation in the case \(\text{Mp} \) for the rest of this section. For \(i = 0, 1, 2 \), we put \(G_i = \text{Mp}(W_i) \) and \(B_i \) the standard Borel subgroup of \(G_i \). Denote by \(J = H \rtimes \text{Mp}(W_0) \), which is a subgroup of \(G_1 \), and \(B_J \) its Borel subgroup. We denote by \(K_i = \text{Sp}(W_i)(\mathfrak{o}_F) \) a hyperspecial maximal subgroup of \(\text{Sp}(W_i) \). The metaplectic cover \(\text{Mp}(W_i) \rightarrow \text{Sp}(W_i) \) splits canonically over \(K_i \), so we view \(K_i \) as a compact (but not maximal) subgroup of \(G_i \) and an element in \(K_i \) is naturally viewed as an element in \(G_i \). Let \(K_J = K_1 \cap J \). The subgroup \(P_i = M_iN_i \) \((i = 1, \cdots, r - 1) \) is a parabolic subgroup of \(\text{Sp}(W_2) \) as before. The metaplectic double cover splits canonically over \(N_i \), so we consider \(N_i \) as subgroups of \(G_2 \). By the Weyl group of \(\text{Mp}(W_i) \), we mean the Weyl group of \(\text{Sp}(W_i) \). We let

\[
w_{2, \text{long}} = \begin{pmatrix} \mathbf{w}_m & \mathbf{w}_n \\ -\mathbf{w}_m & \mathbf{w}_{n+1} \end{pmatrix}, \quad w_{1, \text{long}} = \begin{pmatrix} \mathbf{w}_{n+1} \\ -\mathbf{w}_n \end{pmatrix}, \quad w_{0, \text{long}} = \begin{pmatrix} \mathbf{w}_n \\ -\mathbf{w}_m \end{pmatrix}
\]

be representatives of the longest elements in the Weyl groups \(W_{G_2}, W_{G_1} \) and \(W_{G_0} \) respectively. They are viewed as elements in \(G_2, G_1 \) and \(G_0 \) respectively.

For \((\Xi_1, \cdots, \Xi_m) \in \mathbb{C}^m \) and \((\xi_1, \cdots, \xi_n) \in \mathbb{C}^n \), we denote by \(\Xi \) and \(\xi \) the genuine character of \(B_2 \) and \(B_0 \) respectively, defined by

\[
\Xi((\text{diag}[t_m, \cdots, t_1, t_1^{-1}, \cdots, t_m^{-1}], \epsilon)) = \epsilon \cdot (\chi_\psi \Xi_1)(t_1) \cdots (\chi_\psi \Xi_m)(t_m),
\]

\[
\xi((\text{diag}[t_1, \cdots, t_1, t_1^{-1}, \cdots, t_n^{-1}], \epsilon)) = \epsilon \cdot (\chi_\psi \xi_1)(t_1) \cdots (\chi_\psi \xi_n)(t_n).
\]

We have the unramified principal series representation \(I(\Xi) \) of \(G_2 \) and \(I(\xi, \overline{\psi}) \) of \(J \). We let \(f_{\xi, \overline{\psi}} \) be the \(K_J \) fixed element in \(I(\xi, \overline{\psi}) \) such that \(f_{\xi, \overline{\psi}}(1) = 1 \). We will need to integrate over \(\text{Mp}(W_0) \). For this, we pick a measure \(dx \) on \(\text{Mp}(W_0) \), such that for any \(f \in C^\infty_c(\text{Sp}(W_0)) \), we have \(\int_{\text{Sp}(W_0)} f(g)dg = \int_{\text{Mp}(W_0)} f(x)dx \). When integrating over \(K_i \)'s or \(K_J \), we always use the measure so that the volume of the domain of the integration is one.

With this modification of notation, the integral \(I(g_2, \Xi, \xi, \psi) \) in both cases \(\text{Mp} \) and \(\text{Sp} \) can be written as

\[
I(g_2, \Xi, \xi, \psi) = \int_J \int_{K_J} \mathcal{F}_\psi \Phi_\Xi(g_2^{-1}g_J)f_{\xi, \overline{\psi}}(k_Jg_J)dk_Jdg_J.
\]
4.2. **Reduction Steps:** \(r \geq 1 \). We distinguish two cases: \(r = 0 \) and \(r \geq 1 \). We treat the case \(r \geq 1 \) first.

Let \(\dot{w} = w_{1, \text{long}}^{-1}w_{2, \text{long}} \) be a representative of the longest element in \(W_{G_1} \setminus W_{G_2} \).

Lemma 4.2.1. If \(g_2 \in G_2 \) and \(g_J \in J \), then

\[
\mathcal{F}_\psi \Phi_{\Xi}(g_2^{-1}g_J) = \dot{w}^{-1} \int_{K_1} \int_{N_{r-1}} \mathcal{F}_\psi(\pi_2(g_J)f_{\Xi})(k_1\dot{w}n)(\pi_2^\vee(g_2)f_{\Xi^{-1}})(k_1\dot{w}n)dn dk_1,
\]

where

\[
w = \int_{N_{r-1}} f_{\Xi}(\dot{w}n)f_{\Xi^{-1}}(\dot{w}n)dn = \frac{\Delta_{T_2}}{\Delta_{G_2}} \left(\frac{\Delta_{T_1}}{\Delta_{G_1}} \right)^{-1}.
\]

Proof. By definition,

\[
\mathcal{F}_\psi \Phi_{\Xi}(g_2^{-1}g_J) = \int_{N_{r-1}} B_{\pi_2}(\pi_2(g_2^{-1}g_Ju)f_{\Xi}, f_{\Xi^{-1}})\psi(u)^{-1}du
\]

\[
= \int_{N_{r-1}} B_{\pi_2}(\pi_2(g_Ju)f_{\Xi}, \pi_2^\vee(g_2)f_{\Xi^{-1}})\psi(u)^{-1}du.
\]

By [36, Lemma 3.2] (it is valid also for metaplectic groups since the Bruhat decomposition is valid for metaplectic groups), there is an open compact subgroup \(U \) of \(N_{r-1} \), such that \((\pi_2^\vee(g_2)f_{\Xi^{-1}})^o = R(\delta_U \psi)(\pi_2^\vee(g_2)f_{\Xi^{-1}}) \) and \((\pi_2(g_2)f_{\Xi})^o = R(\delta_U \psi)(\pi_2(g_2)f_{\Xi}) \) are supported in \(B_2\dot{w}P_{r-1} \). Then

\[
\mathcal{F}_\psi \Phi_{\Xi}(g_2^{-1}g_J) = \int_{N_{r-1}} B_{\pi_2}(\pi_2(u)(\pi_2(g_J)f_{\Xi})^o, (\pi_2^\vee(g_2)f_{\Xi^{-1}})^o)\psi(u)^{-1}du.
\]

We use the following realization of \(B_{\pi_2} \):

\[
B_{\pi_2}(\varphi, \varphi^\vee) = \dot{w}^{-1} \int_{K_1} \int_{N_{r-1}} \varphi(k_1\dot{w}n)\varphi^\vee(k_1\dot{w}n)dn dk_1,
\]

where

\[
w = \int_{N_{r-1}} f_{\Xi}(\dot{w}n)f_{\Xi^{-1}}(\dot{w}n)dn = \frac{\Delta_{T_2}}{\Delta_{G_2}} \left(\frac{\Delta_{T_1}}{\Delta_{G_1}} \right)^{-1}.
\]

In fact, the pairing is \(G_2 \) invariant since \(B_2K_1\dot{w}N_{r-1} \) is an open subset of \(G_2 \). The evaluation of \(w \) is as follows. Denote temporarily by \(f_i \) (\(i = 1, 2 \)) the function on \(\text{Sp}(W_i) \) which satisfies \(f_i|_{K_i} = 1 \), \(f_i(bg) = \delta_i(b)f_i(g) \) for all \(b \in B_i \) where \(B_i \) is the Borel subgroup of \(\text{Sp}(W_i) \) and \(\delta_i \) is the modulus character of \(B_i \). Define a function \(f'_1 \) on \(\text{Sp}(W_1) \) by

\[
f'_1(g) = \int_{N_{r-1}} f_2(\dot{w}ng)dn.
\]

Then \(w = f'_1(1) \). Since \(f'_1(bg) = \delta_1(b)f'_1(g) \) and \(f'_1|_{K_1} \) is a constant, it follows that \(f'_1 = \dot{w}f_1 \).

Therefore

\[
\int_{N_\text{m}\cap\text{Sp}(W_1)} f'_1(w_{1, \text{long}}n)dn = \dot{w} \int_{N_\text{m}\cap\text{Sp}(W_1)} f_1(w_{1, \text{long}}n)dn.
\]
The left hand side equals
\[\int_{N_m} f_2(w_{2,\text{long}}) \, dn \]
by the definition of \(f'_1 \). It follows from [16, Proposition 4.7] that
\[\int_{N_m \cap \text{Sp}(W_i)} f_i(w_{i,\text{long}}) \, dn = \frac{\Delta_{T_i}}{\Delta_{G_i}}. \]
We then conclude that
\[w = \frac{\Delta_{T_2}}{\Delta_{G_2}} \left(\frac{\Delta_{T_1}}{\Delta_{G_1}} \right)^{-1}. \]

We continue the computation of \(F_\psi \Phi_\Xi(g_2^{-1} g_J) \). We have
\[F_\psi \Phi_\Xi(g_2^{-1} g_J) = w^{-1} \int_{N_{r-1}} \int_{K_1} \int_{N_{r-1}} (\pi_2(g_J) f_\Xi)(\pi_2'(g_2) f_\Xi^{-1}) (k_1 \hat{w} u) \psi(u)^{-1} \, dn dk_1 du, \]
where the integrand is compactly supported. It equals
\[
\begin{align*}
&w^{-1} \int_{K_1} \int_{N_{r-1}} F_\psi(\pi_2(g_J) f_\Xi)(\pi_2'(g_2) f_\Xi^{-1}) (k_1 \hat{w} u) \psi(u)^{-1} \, dn dk_1 \\
&= w^{-1} \int_{K_1} \int_{N_{r-1}}^{\text{st}} F_\psi(\pi_2(g_J) f_\Xi)(\pi_2'(g_2) f_\Xi^{-1}) (k_1 \hat{w} u) \psi(u)^{-1} \, dn dk_1.
\end{align*}
\]

By Lemma 4.2.1, we have
\[I(g_2, \Xi, \xi, \psi) = w^{-1} \int_{N_{r-1}} \int_{K_1} \int_{N_{r-1}}^{\text{st}} F_\psi f_\Xi(k_1 \hat{w} n g_J) \pi_2'(g_2) f_\Xi^{-1}(k_1 \hat{w} n) f_{\xi, \psi}(k_J g_J) \, dk_J \, dn dk_1 \, dg_J. \]

Let
\[l_0^* = (1, \ldots, 1) \in L^*, \quad \eta_1 = w_{1,\text{long}} h(l_0^*, 0) \in G_1, \quad \eta = \hat{w} \eta_1 \in G_2. \]

Lemma 4.2.2. The double coset \(B_2 \eta (N_{r-1} \times B_J) \) is open dense in \(G_2 \).

Proof. This is straightforward to check. \(\square \)

Thanks to this lemma, we can define a function \(Y_{\Xi, \xi, \psi} \) on \(G_2 \) with the following properties.

1. \(Y_{\Xi, \xi, \psi}(b_2 g_2 h(l, t) b_0 u) = (\Xi^{-1} \delta_{B_2}^{1/2})(b_2)(\xi \delta_{B_J}^{-1/2})(b_0) \overline{\psi(t)} \psi_{\tau-1}(u) Y_{\Xi, \xi, \psi}(g_2) \) for any \(b_2 \in B_2, b_0 \in B_0, l \in L \) and \(u \in N_{r-1}. \)

2. The support of \(Y_{\Xi, \xi, \psi} \) is \(B_2 \eta (N_{r-1} \times B_J) \).

3. \(Y_{\Xi, \xi, \psi}(\eta) = 1. \)

The space of functions that satisfy the first two conditions is one dimensional by Lemma 4.2.2. We have
\[Y_{\Xi, \xi, \psi}(b_2 \eta h(l, t) b_0 u) = (\Xi^{-1} \delta_2^{1/2})(b_2)(\xi \delta_{B_J}^{-1/2})(b_0) \overline{\psi(t)} \psi_{\tau-1}(u), \]

\[\text{where the integrand is compactly supported. It equals} \]
\[\begin{align*}
&w^{-1} \int_{K_1} \int_{N_{r-1}} F_\psi(\pi_2(g_J) f_\Xi)(\pi_2'(g_2) f_\Xi^{-1}) (k_1 \hat{w} u) \psi(u)^{-1} \, dn dk_1 \\
&= w^{-1} \int_{K_1} \int_{N_{r-1}}^{\text{st}} F_\psi(\pi_2(g_J) f_\Xi)(\pi_2'(g_2) f_\Xi^{-1}) (k_1 \hat{w} u) \psi(u)^{-1} \, dn dk_1.
\end{align*}
\]
for $b_2 \in B_2$, $b_0 \in B_0$, $l \in L$ and $u \in N_{r-1}$. We define a function $T_{\Xi, \xi, \psi}$ on G_2 as

$$T_{\Xi, \xi, \psi}(g_2) = \begin{cases} \int_J F_{\psi} f_{\Xi}(g_2 g_J) f_{\xi, \Xi}(g_J) dg_J, & g_2 \in B_2 \eta(N_{r-1} \times B_J), \\ 0, & \text{otherwise.} \end{cases}$$

If the defining integral of $T_{\Xi, \xi, \psi}$ is convergent, then we have

$$T_{\Xi, \xi, \psi}(g_2) = T_{\Xi, \xi, \psi}(\eta) Y_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}(g_2), \quad g_2 \in G_2.$$

We assume that the defining integral of $T_{\Xi, \xi, \psi}$ is convergent for the moment. This will be proved later. It follows that

$$I(g_2, \Xi, \xi, \psi) = w^{-1} \int_{K_1} \int_{N_{r-1}} \int_{K_J} T_{\Xi, \xi, \psi}(k_1 \hat{w} \eta b) \pi_2^{\cdot}(g_2) f_{\Xi^{-1}}(k_1 \hat{w} n) dk_J dn dk_1$$

$$= w^{-1} T_{\Xi, \xi, \psi}(\eta) \int_{K_1} \int_{N_{r-1}} \int_{K_J} Y_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}(k_1 \hat{w} \eta b) \pi_2^{\cdot}(g_2) f_{\Xi^{-1}}(k_1 \hat{w} n) dk_J dn dk_1.$$

Define

(4.2.1)

$$S_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}(g_2) = w^{-1} \int_{K_1} \int_{N_{r-1}} \int_{K_J} Y_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}(k_1 \hat{w} \eta b) \pi_2^{\cdot}(g_2) f_{\Xi^{-1}}(k_1 \hat{w} n) dk_J dn dk_1.$$

Then we have

$$I(g_2, \Xi, \xi, \psi) = T_{\Xi, \xi, \psi}(\eta) S_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}(g_2).$$

4.3. **Reduction Steps**: $r = 0$. We now treat the case $r = 0$.

The integral we need to compute is

$$I(g_J, \Xi, \xi, \psi) = \int_{G_0} \int_{K_J} f_{\Xi}(k_0 g_J) f_{\xi, \Xi}(k_J g_J^{-1} g) dk_0 dk_J dg.$$

We define

$$l_0 = (1, \cdots, 1) \in L, \quad \eta = w_{0, \text{long}} h(l_0, 0) \in J.$$

Similar to Lemma 4.2.2, it is straightforward to prove the following lemma.

Lemma 4.3.1. The double coset $B_J \eta B_0$ is open dense in J.

We define a function $Y_{\Xi, \xi, \psi}$ on J which is supported on $B_J \eta B_0$ by

$$Y_{\Xi, \xi, \psi}(h(l, t) b_0^0 b_0) = (\xi^{-1} \delta_J^1)(b_0^0)(\Xi^1 J^1)(b_0) \psi(t), \quad b_0, b_0^0 \in B_0, l \in L.$$

We define the function $T_{\Xi, \xi, \psi}$ on J by

$$T_{\Xi, \xi, \psi}(g_J) = \begin{cases} \int_{G_0} f_{\Xi}(g) f_{\xi, \Xi}(g_J g) dg, & g_J \in B_J \eta B_0, \\ 0, & \text{otherwise.} \end{cases}$$
and the function $S_{\Xi, \xi, \psi}$ by

$$S_{\Xi, \xi, \psi}(g_j) = \int_{K_J} \int_{K_0} Y_{\Xi, \xi, \psi}(k_J g_J^{-1} k_0) dk_0 dk_J.$$

It follows that

$$I(g_j, \Xi, \xi, \psi) = T_{\Xi, \xi, \psi}(\eta) S_{\Xi, \xi, \psi}(g_j).$$

We now prove the convergence of the defining integral of $T_{\Xi, \xi, \psi}$ and $S_{\Xi, \xi, \psi}$. Assume that $r \geq 0$.

Lemma 4.3.2. The defining integrals for $T_{\Xi, \xi, \psi}$ and $S_{\Xi, \xi, \psi}$ are absolutely convergent if Ξ' and ξ are sufficiently close to the unitary axis, where Ξ' is the restriction of Ξ to T_1.

Proof. If $r = 0$, then it follows from Proposition 2.2.1 (or its proof, applied to $|\Xi|$ and $|\xi|$) that $I(g_j, \Xi, \xi, \psi)$ is convergent if Ξ and ξ are sufficiently close to the unitary axis. It then follows that for a fixed $g_j \in J$, the defining integral of $T_{\Xi, \xi, \psi}(k_J g_J^{-1} k_0)$ is convergent for almost all $k_J \in K_J$ and $k_0 \in K_0$ such that $k_J g_J^{-1} k_0 \in B_J \eta B_0$. By the definition of $T_{\Xi, \xi, \psi}$, its defining integral is convergent for some $g_J \in B_J \eta B_0$ if and only if it is convergent for all $g_J \in B_J \eta B_0$. Therefore the defining integral of $T_{\Xi, \xi, \psi}(\eta)$ is convergent. This then implies that the defining integral of $S_{\Xi, \xi, \psi}$ is convergent.

The convergence in the case of $r = 1$ can be proved similarly. We only need to change the notation at several places.

Now assume that $r \geq 2$. By [36, Lemma 3.3], there is an open compact subgroup U of N_{r-1}, such that for all $g_J \in J$,

$$\mathcal{F}_u f_{\Xi}(\eta g_J) = \int_U f_{\Xi}(\eta g_J u) \overline{\psi_{\Xi^{-1}}(u)} du.$$

Therefore there is a constant C, such that

$$|\mathcal{F}_u f_{\Xi}(\eta g_J)| \leq C \times f_{|\Xi|}(\eta g_J).$$

The Lemma in the case $r \geq 2$ then follows from the case $r = 1$. \qed

4.4. **Proof of Proposition 2.2.3.** Assume that $r \geq 1$. Let $\Xi^0 = (\Xi_1, \cdots, \Xi_n) \in \mathbb{C}^n$. Let σ be the unramified principal series representation of G_0 defined by Ξ^0. We let τ be the unramified principal series representation of GL_r defined by the unramified characters $(\Xi_{n+1}, \cdots, \Xi_m)$.

Following the notation of [24] and [36], we shall denote $T_{\Xi, \xi, \psi}(\eta)$ by $\zeta(\Xi, \xi, \psi)$.

Lemma 4.4.1. We have

$$\zeta(\Xi, \xi, \psi) = \begin{cases} \frac{L(\frac{1}{2}, \pi_0 \times \tau)}{L(1, \sigma \times \tau) L(1, \tau, \Lambda^2)} \prod_{1 \leq i < j \leq r} \frac{1}{L(1, \Xi_{n+j} \Xi_{n+j}^{-1})} \zeta(\Xi^0, \xi, \psi), & \text{Case Sp}, \\ \frac{L(\frac{1}{2}, \pi_0 \times \tau)}{L(1, \sigma \times \tau) L(1, \tau, \Sym^2)} \prod_{1 \leq i < j \leq r} \frac{1}{L(1, \Xi_{n+j} \Xi_{n+j}^{-1})} \zeta(\Xi^0, \xi, \psi), & \text{Case Mp}. \end{cases}$$

32
We can then write the integral (4.4.1) as

\[
\zeta(\Xi, \xi, \psi) = \int_{G_0} \int_H \int_{N_{r-1}} f_{\Xi}(w_{2,\text{long}} h(l_0^s, 0) u h g_0) f_{\xi}(g_0) \psi_{r-1}(u) \omega(\psi(h g_0) \phi(0)) dudh dg_0.
\]

We combine the integral over \(H \) and \(N_{r-1} \) to get an integral over \(N_r \) and get

\[
\zeta(\Xi, \xi, \psi) = \int_{G_0} \int_{N_r} f_{\Xi}(w_{2,\text{long}} h(l_0^s, 0) v g_0) f_{\xi}(g_0) \psi_{r-1}(v) \omega(\psi(h(l_0^s, 0)^{-1} \ell(v) g_0) \phi(0)) dv dg_0,
\]

where \(\ell : N_r \to H \) is the natural projection whose kernel is \(N_{r-1} \). We make a change of variable \(v \mapsto h(l_0^s, 0)^{-1} v \) and get

\[
\zeta(\Xi, \xi, \psi) = \int_{G_0} \int_{N_r} f_{\Xi}(w_{2,\text{long}} g_0 v) f_{\xi}(g_0) \psi_{r-1}(v) \omega(h(l_0^s, 0)^{-1} g_0 \ell(v)) \phi(0) dv dg_0,
\]

where in the second equality we made a change of variable \(v \mapsto g_0 v g_0^{-1} \) and used the fact that \(\psi_{r-1}(g_0 v g_0^{-1}) = \psi_{r-1}(v) \).

Let \(N_R \) be the unipotent radical of the upper triangular Borel subgroup of \(GL_r \) and

\[
f_{W_r, \Xi^0}(g) = \int_{N_R} f_{\Xi}(w_r, n g) \phi_r(n) dn, \quad g \in G_2.
\]

Then by the Casselman–Shalika formula, we have

\[
f_{W_r, \Xi^0}(1) = \prod_{1 \leq i < j \leq r} \frac{1}{L(1, \Xi_{n+i} \Xi_{n+j}^{-1})}.
\]

We can then write the integral (4.4.1) as

\[
\prod_{1 \leq i < j \leq r} \frac{1}{L(1, \Xi_{n+i} \Xi_{n+j}^{-1})} \times \int_{N_R \setminus N_r} \int_{G_0} f_{W_r, \Xi^0}(w_{0,\text{long}} g_0 \tilde{w} v) f_{\xi}(g_0) \omega(h(l_0^s, 0)^{-1} g_0 \ell(v)) \phi(0) dv dg_0,
\]

where \(\tilde{w} = \begin{pmatrix} 1 & \mathbb{R} \\ -1 & 1 \end{pmatrix} \). We make a change of variable \(g \mapsto w_{0,\text{long}} g w_{0,\text{long}}^{-1} \) and \(v \mapsto w_{0,\text{long}}^{-1} v w_{0,\text{long}} \). Then since \(w_{0,\text{long}} \in K_0 \) and \(f_{W_r, \Xi^0}, f_{\xi}, \phi \) are all \(K_0 \)-fixed, we conclude that

\[
\zeta(\Xi, \xi, \psi) = \prod_{1 \leq i < j \leq r} \frac{1}{L(1, \Xi_{n+i} \Xi_{n+j}^{-1})} \times \int_{N_R \setminus N_r} \int_{G_0} f_{W_r, \Xi^0}(g \tilde{w} v) f_{\xi}(w_{0,\text{long}} g) \omega(w_{0,\text{long}} h(l_0^s, 0) \ell(v)) \phi(0) dv dg.
\]

By definition,

\[
\zeta(\Xi^0, \xi, \psi) = \int_{G_0} f_{\Xi^0}(g) f_{\xi}(w_{0,\text{long}} g) \omega(\psi(w_{0,\text{long}} h(l_0^s, 0) g) \phi(0)) dg.
\]
We then apply [14, Theorem 4.3] and [14, End of Section 4, (4.7)] to get the lemma. (In the notation of [14], we apply this to the case \(r = 0 \) and \(b_r(f_{\Xi^0}, f_{\xi}, \phi) = \zeta(\Xi^0, \xi, \psi) \).)

We now compute \(S'_{\Xi, \xi, \psi}^{-1}(1) \). Define the projection \(\text{pr}_2 : C^\infty_c(G_2) \to I(\Xi) \) by

\[
\text{pr}_2(F_2)(g_2) = \int_{B_2} F_2(b_2 g_2) (\Xi^{-1} \delta_1^{1/2})(b_2) db_2,
\]

where the measure \(db_2 \) is the left invariant measure on \(B_2 \) so that \(\text{pr}_2(1_{K_2}) = f_\Xi \). Then we define

\[
l_{\Xi, \xi, \psi} \in \text{Hom}_{\mathbb{N}_{r-1} \times J}(I(\Xi), I^j(\xi^{-1}, \psi) \otimes \psi_{r-1})
\]

by

\[
l_{\Xi, \xi, \psi}(f_2)(g_2) = \int_{G_2} f'_2(g_2 g_2) Y_{\Xi, \xi, \psi}(g_2) dg_2,
\]

where \(f'_2 \) is any element in \(C^\infty_c(G_2) \) with \(\text{pr}_2(f'_2) = f_2 \). It is not hard to check that \(l_{\Xi, \xi, \psi} \) is independent of the choice of \(f'_2 \). We define

\[
S_{\Xi, \xi, \psi}(g_2) = B_{I^j(\xi, \psi)}(f_{\xi, \psi}, l_{\Xi, \xi, \psi}(\pi_2(g_2) f_{\Xi})).
\]

The defining integral of \(l_{\Xi, \xi, \psi} \) is convergent if \(Y_{\Xi, \xi, \psi} \) is continuous. By [42, Section 3], whose method is valid for both cases \(M_p \) and \(S_p \), \(Y_{\Xi, \xi, \psi} \) is continuous if \((\Xi, \xi) \) lie in some (nonempty) open subset of \(C^{r+s} \times C^s \). We refer the readers to [42, Section 3] for a precise description of this open subset.

Lemma 4.4.2. \(S'_{\Xi, \xi, \psi} = S_{\Xi, \xi, \psi} \).

Proof. We check that \(S_{\Xi, \xi, \psi} \) and \(S'_{\Xi, \xi, \psi} \) agree when \(Y_{\Xi, \xi, \psi} \) is continuous. We divide the proof into two steps.

Step 1. The goal is to reduce the Lemma to the identity (4.4.2).

Let \(\Xi^1 = (\Xi, \cdots, \Xi_{n+1}) \) and \(I(\Xi^1) \) be the unramified principal series representation of \(G_1 \) defined by the character \(\Xi^1 \). Let \(F'_\psi(f_2)(g_2) := F_\psi(f_2)(g_2 \dot{w}) \). Then \(F'_\psi(f_2)|_{G_1} \in I(\Xi^1) \). Define the projection \(\text{pr}_1 : C^\infty_c(G_1) \to I(\Xi^1) \) by

\[
\text{pr}_1(F)(g_1) = \int_{B_1} F(b_1 g_1) (\Xi^{1})^{-1} \delta_1^{1/2}(b_1) db_1,
\]

where the left invariant measure \(db_1 \) is the one so that \(\text{pr}_1(1_{K_1}) = f_{\Xi^1} \). Note that \(\text{pr}_1 \) is surjective and for any element \(f \in I(\Xi^1) \), one can choose \(F \) whose support lies in \(K_1 \) such that \(\text{pr}_1(F) = f \).

Define the intertwining operator \(l'_{\Xi, \xi, \psi} \in \text{Hom}_{\mathbb{N}_{r-1} \times J}(I(\Xi), I^j(\xi^{-1}, \psi) \otimes \psi_{r-1}) \) by

\[
l'_{\Xi, \xi, \psi}(f_2)(g_2) = \int_{G_1} f''_2(g_1 g_2) Y_{\Xi, \xi, \psi}(g_1 \dot{w}) dg_1,
\]

where \(f''_2 \) is any element in \(C^\infty_c(G_1) \) with \(\text{pr}_1(f''_2) = F'_\psi(f_2)|_{G_1} \).
Fix $g_2 \in G_2$ and let $f''_2 \in C_c^\infty(G_1)$ be a smooth function whose support is contained in K_1 and $\text{pr}_1(f''_2) = F'_\psi(\pi_2(g_2)f_{\mathcal{E}})|_{G_1}$. Then
\[
S_{\Xi,\xi,\psi}(g_2) = w^{-1} \int_{K_1} \int_{K_J} Y_{\Xi,\xi,\psi}(k_1 \hat{w} k_J) F'_\psi(\pi_2(g_2)f_{\mathcal{E}})(k_1) dk_J dk_1
= w^{-1} \int_{K_1} \int_{K_J} Y_{\Xi,\xi,\psi}(k_1 \hat{w} k_J) f''_2(k_1) dk_J dk_1
= w^{-1} \int_{K_1} \int_{K_J} Y_{\Xi,\xi,\psi}(k_1 \hat{w}) f''_2(k_1 k_J) dk_J dk_1
= w^{-1} \mathcal{E}_{I^J((\xi,\psi)}(f_{\Xi,\psi}, l'_{\Xi,\xi,\psi}(\pi_2(g_2)f_{\mathcal{E}})).
\]
Therefore in order to prove the lemma, we only need to show $w \cdot l_{\Xi,\xi,\psi} = l'_{\Xi,\xi,\psi}$. We have
\[
\dim \text{Hom}_{N_{r-1} \times I}(I(\Xi), I^J((\xi^{-1}, \psi) \otimes \psi_{r-1})) = 1.
\]
This is proved in [42] in the case Sp, but the proof works equally well in the case Mp as it uses only the decomposition $G_i = B_i K_i$. Therefore we only have to find a function $\varphi \in I(\Xi)$ such that $l_{\Xi,\xi,\psi}(\varphi)(1) \neq 0$ and show that
\[
(4.4.2) \quad l'_{\Xi,\xi,\psi}(\varphi)(1)/l_{\Xi,\xi,\psi}(\varphi)(1) = w.
\]

Step 2. Proof of (4.4.2).

Let $K_i^{(1)}$ be the Iwahori subgroup of K_i. Let $T_i^{(0)} = T_i(\mathfrak{a}_F)$ and $T_i^{(1)}$ be the kernel of the reduction map $T_i^{(0)} \to T_i(\mathfrak{a}_F/\mathfrak{c})$. Note here that by T_i, we mean the diagonal torus of $\text{Sp}(W_i)$ in both cases Sp and Mp. Let \mathcal{B}_i be the opposite Borel subgroup of G_i and \mathcal{N}_i be its unipotent radical. Let $N_i^{(0)} = N_i \cap K_i$, $\mathcal{N}_i^{(1)} = \mathcal{N}_i \cap K_i^{(1)}$ and $N_i^{(1)} = w_{i,\text{long}}^{-1} \mathcal{N}_i^{(1)} w_{i,\text{long}}$. Let $N_{r-1} = N_{r-1} \cap N_2^{(1)}$. Note that in the case Mp, these subgroups of K_i are considered as subgroups of G_i via the splitting $K_i \to G_i$.

Let $\varphi = \text{pr}_2(1_{K_2^{(1)}} \eta) \in C_c^\infty(G_2)$. Then
\[
l_{\Xi,\xi,\psi}(1_{K_2^{(1)}} \eta)(1) = \int_{K_2^{(1)}} Y_{\Xi,\xi,\psi}(k_2 \eta) dk_2.
\]
Recall that $l^*_0 = (1, \cdots, 1) \in L^*$ and $\eta = w_{2,\text{long}} h(l^*_0, 0)$. By the Iwahori decomposition of $K_2^{(1)}$, it is not hard to check that
\[
(4.4.3) \quad K_2^{(1)} \eta = T_2^{(0)} N_2^{(0)} w_{2,\text{long}} h(l^*_0, 0) T_0^{(1)} N_J^{(1)} N_{r-1}^{(1)}.
\]
Therefore $Y_{\Xi,\xi,\psi}(k_2 \eta) = Y_{\Xi,\xi,\psi}(\eta) = 1$ for any $k_2 \in K_2^{(1)}$. Thus
\[
l_{\Xi,\xi,\psi}(1_{K_2^{(1)}} \eta)(1) = \text{vol} K_2^{(1)}.
\]
We now compute \(l'_{\Xi,\xi,\psi}(\text{pr}_2(1_{K^2_r}))\)(1). First
\[
\mathcal{F}_\psi'(\text{pr}_2(1_{K^2_r})) (g_1) = \int_{N_{r-1}} \int_{B_2} 1_{K^2_r} (b_2 g_1 \dot{w} u)(\Xi^{-1}\delta^1_2)(b_2) \psi_{r-1}(u) db_2 du, \quad g_1 \in G_1.
\]
By the decomposition (4.4.3) again, for any \(u \in N_{r-1} \), if \(b_2 g_1 \dot{w} u \in K^2_r \), then \(u \in N_{r-1}^2 \) and \(b_2 g_1 \dot{w} \in K^2_r \). Therefore
\[
\mathcal{F}_\psi'(\text{pr}_2(1_{K^2_r})) (g_1) = \text{vol} N_{r-1}^2 \cdot \int_{B_2} 1_{K^2_r} (b_2 g_1 \dot{w} u)(\Xi^{-1}\delta^1_2)(b_2) db_2
\]
\[
= \text{vol} N_{r-1}^2 \cdot \int_{B_1} 1_{K^2_r} (b_1 g_1 \dot{w} u)(\Xi^{-1}\delta^1_2)(b_1) db_1
\]
Thus
\[
l'_{\Xi,\xi,\psi}(\text{pr}_2(1_{K^2_r})) (1) = \text{vol} N_{r-1}^2 \cdot \int_{G^1} 1_{K^2_r} (g_1 \dot{w} u) Y_{\Xi,\xi,\psi}(g_1 \dot{w}) dg_1
\]
\[
= \text{vol} N_{r-1}^2 \cdot \text{vol} K^1_r.
\]
The lemma then follows since \(\text{vol} N_{r-1}^2 \cdot \text{vol} K^1_r = w \text{vol} K^2_r \). \(\square \)

Lemma 4.4.3. We have
\[
S_{\Xi,\xi,\psi} (1) = \frac{\Delta G_2}{\Delta T_2} \zeta(\Xi,\xi,\psi), \quad S_{\Xi,\xi,\psi} (1) = \frac{\Delta G_0}{\Delta T_0} \zeta(\Xi,\xi,\psi).
\]

Proof. We claim that the restriction of the measure \(dg \) to the open subset \(B_2 \eta B_{J,N_{r-1}} \) decomposes as
\[
dg|_{B_2 \eta B_{J,N_{r-1}}} = \frac{\Delta G_2}{\Delta T_2} \Delta T_0 db_2 \text{d}n_{r-1} \text{d}b_J,
\]
where \(\text{d}b_J = \text{d}b_0 \text{d}l \text{d}t \) if \(b_J = b_0 h(l,t) \). In fact, on the one hand,
\[
\int_{G^1} 1_{K^2_r} (g) dg = [K_2 : K^1_r]^1 = q^{-\dim G_2 + \dim N_2 + \dim T_2} \frac{\Delta G_2}{\Delta T_2}.
\]
On the other hand, it follows from (4.4.3) that
\[
\int_{B_2} \int_{N_{r-1}} \int_{B_{J}} 1_{K^2_r} (b_2 \eta b_J \text{d}n_{r-1}) db_2 \text{d}n_{r-1} \text{d}b_J = q^{-\dim T_0 - \dim N_J - \dim N_{r-1} \Delta T_0}.
\]
The claim then follows. Therefore
\[
l_{\Xi,\xi,\psi}(f_{\Xi})(g_J) = \frac{\Delta G_2}{\Delta T_2} \Delta T_0 \int_{B_J} \int_{N_{r-1}} f_{\Xi}(\eta b_J \text{d}n_{r-1} g_J)(\xi^{-\frac{1}{2}})(b_J) \psi_{r-1}(n_{r-1}) db_J \text{d}n_{r-1}.
\]
We have
\[
S_{\Xi,\xi,\psi} (1) = \frac{\Delta G_2}{\Delta T_2} \Delta T_0 \int_{L^*} \int_{K^2} \int_{B_J} \int_{N_{r-1}} f_{\Xi}(w_{2,\text{long}} h(l^*_0,0)b_J \text{d}n_{r-1} h(l^*,0)k)
\]
\[
(\xi^{-\frac{1}{2}})(b_J) \psi_{r-1}(n_{r-1}) f_{\xi,\psi}(h(l^*,0)k) \text{d}n_{r-1} \text{d}b_J \text{d}k \text{d}l^*.
\]
36
We combine the integration over L, K_0 and B_J as an integral over J and then conclude that

$$S_{\Xi, \xi, \psi}(1) = \frac{\Delta G_2}{\Delta T_2 \Delta T_0} \int J \int_{N_r-1} f_{\Xi}(w_{2, \text{long}} h(t_0, 0)n_{r-1}g_J) \psi_{r-1}(n_{r-1}) f_{\xi, \psi}(g_J) dn_{r-1} dg_J$$

$$= \frac{\Delta G_2}{\Delta T_2 \Delta T_0} \zeta(\Xi, \xi, \psi).$$

The equality

$$S_{\Xi, \xi, \psi}(1) = \frac{\Delta G_0}{\Delta T_0} \zeta(\Xi^0, \xi, \psi)$$

can be proved similarly. In fact,

$$dg_J|_{B_J B_0} = \frac{\Delta G_2}{\Delta T_0} db_J db_0.$$

Therefore

$$S_{\Xi, \xi, \psi}(1) = \int J \int_{G_0} 1_K_J(g_J) 1_{K_0}(g_0) Y_{\Xi, \xi, \psi}(g_J g_0^{-1}) dg_J dg_0$$

$$= \frac{\Delta G_0}{\Delta T_0} \int_{G_0} \int_{B_J} \int_{B_0} 1_{K_J}(b_J \eta b_0 g_0) 1_{K_0}(g_0) Y_{\Xi, \xi, \psi}(b_J \eta b_0) db_J db_0 dg_0$$

$$= \frac{\Delta G_0}{\Delta T_0} \zeta(\Xi^0, \xi, \psi).$$

□

Proof of Proposition 2.2.3. If $r = 0$, then Proposition 2.2.3 can be proved in exactly the same way as [50, Appendix D.3]. We omit the details. See also Lemma 7.2.2.

Assume that $r \geq 1$. Suppose that we are in the case Sp. It follows from Lemma 4.4.1 and Lemma 4.4.3 that

$$I(1, \Xi, \xi, \psi) = \left(\frac{\Delta T_2}{\Delta G_2} \right)^{-1} \left(\frac{\Delta T_0}{\Delta G_0} \right)^{-1} \left(\frac{L(p_{1/2}, \pi_0 \times \tau)}{L(1, \sigma \times \tau) L(1, \tau, \wedge^2)} \prod_{1 \leq i < j \leq r} \frac{1}{L(1, \Xi_{n+i-1} \Xi_{n+j}^{-1})} \right)$$

$$\left(\frac{L(p_{1/2}, \pi_0^\vee \times \tau^\vee)}{L(1, \sigma^\vee \times \tau^\vee) L(1, \tau^\vee, \wedge^2)} \prod_{1 \leq i < j \leq r} \frac{1}{L(1, \Xi_{n+i-1} \Xi_{n+j})} \right)^{-1} I(1, \xi, \Xi^0, \psi).$$

Proposition 2.2.3 in the case $r \geq 1$ is then reduced to the case $r = 0$. The case Mp can be proved in the same way. We only need to change notation at all necessary places. □

Part 2. Compatibility with Ichino–Ikeda’s conjecture

The notation in this part of the paper is independent from Part I. We keep the notation and convention in the Introduction. Additional notation will be fixed in each section.
5. SOME ASSUMPTIONS AND REMARKS

5.1. Parameters. We will prove that Conjecture 2.3.1(3) is compatible with Ichino–Ikeda’s conjecture [24, Conjecture 2.1]. The most subtle part is the appearance of the size of the centralizer of the global L-parameters in the formula. To address this issue, of course, one has to assume that the Langlands correspondence exists and satisfies some expected properties. We begin by setting down the precise hypotheses that we require. We remark that for orthogonal groups and symplectic groups, they follow from the work of Arthur [2] and the recent work of Atobe–Gan [4]. For metaplectic groups, they should eventually follow from the on-going work of Wen-Wei Li (e.g. [34]).

We first state the hypothesis on the local Langlands correspondences.

Hypothesis LLC. We assume the Hypothesis (LLC), (Local factors), (Plancherel measures) from [9, Appendix C] at all non-archimedean places v of F. Thus [9, Theorem C.5] holds if v is non-archimedean. It also holds if v is archimedean by [38].

We note that if v is an archimedean place, then the Hypothesis (LLC) is established by Langlands [28]. Hypothesis (Local factors) is proved in [33]. Hypothesis (Plancherel measures) is proved by [1]. If v is non-archimedean, then they should follow from [2, Theorem 1.5.1, Theorem 9.4.1, Conjecture 9.4.2].

Thus, if v is a place of F and π_v is an irreducible admissible representation of $G(F_v)$, where $G = \text{SO}(2n+1)$ (resp. $\text{SO}(2n)$, resp. $\text{Sp}(2n)$) gives rise to a $2n$ (resp. $2n$, resp. $2n+1$) dimensional selfdual representation Ψ_{π_v} of the Weil–Deligne group $\text{WD}(F_v)$ of sign -1 (resp. $+1$, resp. $+1$). We call it the local L-parameter of π_v.

Let π_v be an irreducible admissible genuine representation of $\text{Mp}(2n)(F_v)$ and $\Theta_{\psi_v}(\pi_v)$ be the restriction to $\text{SO}(V)(F_v)$ of its theta lift to $\text{O}(V)(F_v)$ where V is a $2n + 1$ dimensional orthogonal space over F_v of discriminant 1. By [9, Theorem 1.1], the map $\pi_v \mapsto \Theta_{\psi_v}(\pi_v)$ gives a bijection between the set of irreducible admissible genuine representations of $\text{Mp}(2n)(F_v)$ and the union of the sets of irreducible admissible representations of $\text{SO}(V)(F_v)$ where V ranges over all $2n + 1$ dimensional orthogonal spaces over F_v of discriminant 1. This bijection satisfies several expected properties (c.f. [9, Theorem 1.3] for a list). The local L-parameter of π_v is defined to be $\Psi_{\Theta_{\psi_v}(\pi_v)}$. Note that the local L-parameter of π_v depends on ψ_v.

We now turn to the global Langlands correspondences. We shall be concerned only with tempered cuspidal automorphic representations. To avoid mentioning the hypothetical Langlands group L_F, we use the following substitute of the global L-parameters following [2, Section 1.4] and [8, Section 25, p. 103–105].

Let π be an irreducible cuspidal tempered automorphic representation of $G(\mathbb{A}_F)$, where $G = \text{SO}(2n+1)$ (resp. $\text{SO}(2n)$, $\text{Sp}(2n)$, $\text{Mp}(2n)$). By the global L-parameter of π, we mean the following data:
• a partition \(N = N_1 + \cdots + N_r \), where \(N = 2n \) (resp. \(2n, 2n + 1, 2n \));
• a collection of pairwisely inequivalent selfdual irreducible cuspidal automorphic representations \(\Pi_i \) of \(\text{GL}_{N_i}(\mathbb{A}_F) \) of sign \(-1\) (resp. \(+1, +1, -1\)), \(i = 1, \ldots, r \),

which satisfy the condition that for all places \(v \) of \(F \), \(\Psi_{\pi_v} \simeq \otimes_{i=1}^r \Psi_{\Pi_{i,v}} \) as representations of \(\text{WD}(F_v) \), where \(\Psi_{\Pi_{i,v}} \) is an \(N_i \) dimensional representation of \(\text{WD}(F_v) \) associated to \(\Pi_{i,v} \) by the local Langlands correspondences for \(\text{GL}_{N_i} \) (which is known due to [19] and [21]). By [26, Theorem 4.4], the global \(L \)-parameter of \(\pi \) is unique if it exists. We write formally \(\Psi_\pi = \boxtimes_{i=1}^r \Pi_i \).

We now state the hypothesis on the global Langlands correspondences.

Hypothesis GLC. The global \(L \)-parameter of \(\pi \) exists.

For orthogonal and symplectic groups, a weaker version of this (namely, replacing the requirement “for all places \(v \)” by “for almost all places \(v \)”) follows from [2, Theorem 1.5.2, Theorem 9.5.3]. For metaplectic groups, this should follow from the work of Wen-Wei Li.

With this reformulation of the \(L \)-parameter of \(\pi \), we (re-)define the centralizer

\[
S_\pi = S_{\Psi_\pi} = \{(a_i) \in (\mathbb{Z}/2\mathbb{Z})^r \mid a_1^{N_1} \cdots a_r^{N_r} = 1\}.
\]

From now on, when we speak of the global \(L \)-parameters and their centralizers, we always mean the one defined here.

We end this subsection by some discussions on the automorphic representations on the even orthogonal groups. Suppose that \(\pi \) is an irreducible cuspidal tempered automorphic representation of \(\text{O}(2n)(\mathbb{A}_F) \). We are interested in the restriction \(\pi|_{\text{SO}(2n)(\mathbb{A}_F)} \). Here by \(\pi|_{\text{SO}(2n)(\mathbb{A}_F)} \), we mean the following. Suppose that \(\pi \) is realized on \(V \), which is a subspace of the cuspidal automorphic spectrum of \(\text{O}(2n)(\mathbb{A}_F) \). Let \(V^0 = \{ f|_{\text{SO}(2n)(\mathbb{A}_F)} \mid f \in V \} \). Then \(\pi|_{\text{SO}(2n)(\mathbb{A}_F)} \) stands for the natural action of \(\text{SO}(2n)(\mathbb{A}_F) \) on \(V^0 \). We summarize some recent results of Atobe–Gan [4] as the following Hypothesis O.

Hypothesis O. Each tempered automorphic representation \(\pi \) appears with multiplicity one in the discrete spectrum of \(\text{O}(2n)(\mathbb{A}_F) \). The following three cases exhaust all possibilities of \(\pi|_{\text{SO}(2n)(\mathbb{A}_F)} \):

1. \(\pi|_{\text{SO}(2n)(\mathbb{A}_F)} \) is irreducible and appears with multiplicity one in the discrete spectrum of \(\text{SO}(2n)(\mathbb{A}_F) \).
2. \(\pi|_{\text{SO}(2n)(\mathbb{A}_F)} \) is irreducible and appears with multiplicity two in the discrete spectrum of \(\text{SO}(2n)(\mathbb{A}_F) \). In this case, there is an automorphic representation \(\pi' \) of \(\text{O}(2n)(\mathbb{A}_F) \) such that \(\pi \neq \pi' \) and \(\pi|_{\text{SO}(2n)(\mathbb{A}_F)} \oplus \pi'|_{\text{SO}(2n)(\mathbb{A}_F)} \) is the \(\pi|_{\text{SO}(2n)(\mathbb{A}_F)} \)-isotypic component of the discrete spectrum of \(\text{SO}(2n)(\mathbb{A}_F) \). Note that \(\pi' \) is not uniquely determined.
3. \(\pi|_{\text{SO}(2n)(\mathbb{A}_F)} = \pi^+ \oplus \pi^- \) where \(\pi^+ \) and \(\pi^- \) are inequivalent automorphic representations of \(\text{SO}(2n)(\mathbb{A}_F) \). Both \(\pi^+ \) and \(\pi^- \) appear with multiplicity one in the discrete spectrum of \(\text{SO}(2n)(\mathbb{A}_F) \). Moreover, \(\Psi_{\pi^+} = \Psi_{\pi^-} \).
In each case, let \(\pi^0 \) be an irreducible component of \(\pi|_{SO(2n)(\mathbb{A}_F)} \). Then we define the \(L \)-parameter \(\Psi_\pi \) of \(\pi \) by \(\Psi_\pi = \Psi_{\pi^0} \). Suppose that \(\Psi_\pi = \Pi_1 \boxplus \cdots \boxplus \Pi_r \) where \(\Pi_i \) is an irreducible cuspidal automorphic representation of \(GL_{N_i}(\mathbb{A}_F) \). Then in the first (resp. second and third) case (resp. cases), at least one of \(N_i \)'s is odd (resp. all \(N_i \)'s are even).

Let \(\epsilon \in O(2n)(F) \setminus SO(2n)(F) \). Conjugation by \(\epsilon \) induces an outer automorphism of order two of \(SO(2n) \) which does not depend on the choice of the element \(\epsilon \). We denote this outer automorphism also by \(\epsilon \). If \(n \neq 2 \), then this is the unique nontrivial outer automorphism of \(SO(2n) \). For any automorphic representation \(\sigma \) of \(SO(2n)(\mathbb{A}_F) \), we let \(\sigma^\epsilon \) be its twist by \(\epsilon \). In the first two cases, \((\pi|_{SO(2n)(\mathbb{A}_F)})^\epsilon = \pi|_{SO(2n)(\mathbb{A}_F)} \). In the third case, \((\pi^\pm)^\epsilon = \pi^\mp \). Here we use “=" to indicate that not only the automorphic representations are isomorphic, but the spaces on which they realize are the same.

The automorphic representation \(\pi \) appears with multiplicity one in the discrete spectrum of \(O(2n)(\mathbb{A}_F) \), so the space on which it realizes is canonical. Suppose that \(\pi|_{SO(2n)(\mathbb{A}_F)} \) is irreducible and appears with multiplicity two in the discrete spectrum of \(SO(2n)(\mathbb{A}_F) \). The restrictions of \(\pi \) and \(\pi' \) to \(SO(2n)(\mathbb{A}_F) \) are canonical subspaces of the discrete spectrum of \(SO(2n)(\mathbb{A}_F) \) and give a canonical decomposition of the \(\pi|_{SO(2n)(\mathbb{A}_F)} \)-isotypic component of the discrete spectrum of \(SO(2n)(\mathbb{A}_F) \) (we are not able to distinguish the restrictions of \(\pi \) and \(\pi' \)). Moreover, these subspaces are characterized by the fact that they are invariant under the outer twist \(\epsilon \). In other words, if \(\pi^0 \) (as an abstract representation) is an automorphic representation of \(SO(2n)(\mathbb{A}_F) \) and appears with multiplicity two in the discrete spectrum of \(SO(2n)(\mathbb{A}_F) \), then there are precisely two automorphic realizations \(V_1 \) and \(V_2 \) of \(\pi^0 \) that are invariant under the outer twist by \(\epsilon \). Both \(V_1 \) and \(V_2 \) can be extended to automorphic representations of \(O(2n)(\mathbb{A}_F) \). Moreover, \(V_1 \) and \(V_2 \) are orthogonal in the discrete spectrum of \(SO(2n)(\mathbb{A}_F) \) and \(V_1 \oplus V_2 \) is the \(\pi^0 \)-isotypic component of the discrete spectrum of \(SO(2n)(\mathbb{A}_F) \).

Finally, assume that \(SO(2n) \) is quasi-split and \(\pi^0 \) is an irreducible cuspidal tempered generic automorphic representation of \(SO(2n)(\mathbb{A}_F) \) which appears with multiplicity two in the discrete spectrum. Suppose that \(\Psi_{\pi^0} = \Pi_1 \boxplus \cdots \boxplus \Pi_r \). Then (at least conjecturally) the descent construction [15] provides us with an automorphic realization of \(\pi^0 \) which is invariant under the outer twist \(\epsilon \). We refer the readers to [30, Section 5] for some further discussions on the descent construction.

Convention. We assume the hypotheses LLC, GLC and O from now on, unless otherwise specified.

5.2. **Theta correspondences.** We are going to use the Rallis inner product formula in the later sections of this paper. We will not recall the precise form of this formula in various cases, but refer the readers to [52,53] for the formula in the first term range and to [12] for the formula in the second term range.
We now consider the behavior of the L-parameters under theta correspondences.

Lemma 5.2.1. Let V be a $2n$ dimensional orthogonal space over F and π an irreducible cuspidal tempered automorphic representation of $O(V)(A_F)$. Let $\Theta_\psi(\pi)$ be its theta lift to $Sp(2n)(A_F)$ with additive character ψ. Suppose that $\Theta_\psi(\pi)$ is nonzero and cuspidal. Let $\Psi_\pi = \boxplus_{\Pi_i} \Pi_i$ be the L-parameter of π. Then $\Pi_i \neq 1$ (the trivial character of $A \times F$) for all i.

Proof. Suppose that $\Pi_i = 1$ for some i. We may assume that $i = 1$. Then by Hypothesis O, $\pi|_{SO(V)(A_F)}$ is irreducible. We prove that π has a nonzero theta lift to $Sp(2n - 2)(A_F)$. The lemma then follows from the tower property of the theta lift [40].

If π has a nonzero theta lift to $Sp(2n - 2r)(A_F)$ for some $r > 1$, then by the tower property of the theta lift, π has a nonzero theta lift to $Sp(2n - 2)(A_F)$. Thus we may assume that π does not have a nonzero theta lift to any $Sp(2n - 2r)(A_F)$ for any $r > 1$.

We fix a sufficiently large finite set S of places of F which contains all the archimedean places, so that if $v \notin S$, then π (hence Π_i) is unramified. By the hypotheses LLC and GLC,

$$L^S(s, \pi) = \prod_{i=1}^r L^S(s, \Pi_i),$$

where the left hand side is the standard L-function of π defined by the doubling method and the right hand side is the standard L-function of Π_i. If $i \neq 1$, then $L^S(s, \Pi_i)$ is holomorphic and does not vanish at $s = 1$ [27] and $L^S(s, 1)$ have a simple pole at $s = 1$. Therefore $L^S(s, \pi)$ has a simple pole at $s = 1$.

Let v be a place of F. By assumption, $\pi_v|_{SO(V)(F_v)}$ is irreducible. By [9, Theorem C.5], there is an irreducible admissible representation σ of $Sp(2n - 2)(F_v)$ such that $\pi_v = \Theta_\psi(\sigma)$. This means that π_v has a nonzero theta lift to $Sp(2n - 2)(F_v)$.

It then follows from [53, Theorem 10.1] that π has a nonzero theta lift to $Sp(2n - 2)(A_F)$. This proves the lemma. \hfill \Box

Lemma 5.2.2. Let V be a $2n + 1$ (resp. $2n$) dimensional orthogonal space over F and π be an irreducible cuspidal tempered automorphic representation of $O(V)(A_F)$. Let $\Theta_\psi(\pi)$ be its theta lift to $Mp(2n)(A_F)$ (resp. $Sp(2n)(A_F)$) with additive character ψ. Assume that $\Theta_\psi(\pi)$ is cuspidal and nonzero. Then

$$\Psi_{\Theta_\psi(\pi)} = \Psi_\pi \otimes \chi_V, \text{ resp. } \Psi_{\Theta_\psi(\pi)} = (\Psi_\pi \boxplus 1) \otimes \chi_V,$$

where 1 stands for the trivial character of A_F^\times.

Proof. Let v be a place of F. By [9, Theorem C.5] and [13], we see that

$$\Psi_{\Theta_\psi(\pi_v)} = \Psi_{\pi_v} \otimes \chi_{V,v}, \text{ resp. } \Psi_{\Theta_\psi(\pi_v)} = (\Psi_{\pi_v} \oplus 1_v) \otimes \chi_{V,v},$$

41
By the previous lemma, in the case dim $V = 2n$, Ψ_π does not contain 1. The lemma then follows from [26, Theorem 4.4].

Lemma 5.2.3. Let π be an irreducible cuspidal tempered automorphic representation of $O(V)(\mathbb{A}_F)$ where V is a $2n$ dimensional orthogonal space over F. There is a canonical injective map $S_\pi \rightarrow S_{\Theta_\psi(\pi)}$. It is not bijective if and only if $\Psi_\pi = \Pi_1 \oplus \cdots \oplus \Pi_r$ where Π_i is an irreducible cuspidal automorphic representation of $GL_{N_i}(\mathbb{A}_F)$ with N_i being even. In this case, S_π is an index two subgroup of $S_{\Theta_\psi(\pi)}$.

Proof. Suppose $\Psi_\pi = \bigoplus_{i=1}^r \Pi_i$, where Π_i is an irreducible cuspidal automorphic representation of $GL_{N_i}(\mathbb{A}_F)$ and $\sum_{i=1}^r = 2n$. By Lemma 5.2.2,

$$S_\pi = \{(a_i) \in (\mathbb{Z}/2\mathbb{Z})^r \mid a_1^{N_1} \cdots a_r^{N_r} = 1\}, \quad S_{\Theta_\psi(\pi)} = \{(a_i) \in (\mathbb{Z}/2\mathbb{Z})^{r+1} \mid a_1^{N_1} \cdots a_r^{N_r}a_{r+1} = 1\}.$$

The map $(a_1, \cdots, a_r) \mapsto (a_1, \cdots, a_r, 1)$ is clearly injective. It is not bijective if and only if there are elements $(a_1, \cdots, a_r) \in (\mathbb{Z}/2\mathbb{Z})^r$ so that $a_1^{N_1} \cdots a_r^{N_r} = -1$. This is equivalent to that at least one of N_i’s is odd. \qed

6. Ichino–Ikeda’s conjecture for the full orthogonal group

We review in this section the conjecture of Ichino–Ikeda [24] and extend it to the full orthogonal group. There are minor inaccuracies in the formulation of the conjecture in [24] when the automorphic representation on the even orthogonal group appears with multiplicity two in the discrete automorphic spectrum. We will take care of this issue in Subsection 6.2. The Ichino–Ikeda’s conjecture for the full orthogonal groups is stated in Subsection 6.3. We will show that it follows from the Ichino–Ikeda’s conjecture for the special orthogonal groups. The argument is close to [10, §2, 3] at various points. We give details on the new difficulties that arise in our situation (mainly due to the failure of multiplicity one in the discrete automorphic spectrum) and only state the result when its proof is identical to that in [10].

6.1. Inner products. Let F be a number field and (U, q_U) be an n-dimensional orthogonal group over F. Let $H = O(U)$ and $H^0 = SO(U)$. Recall that there is an exact sequence

$$1 \rightarrow H^0 \rightarrow H \rightarrow \mu_2 \rightarrow 1.$$

We view μ_2 as an algebraic group over F. We write t for the nonidentity element in $\mu_2(F)$ and t_v its image in $\mu_2(F_v)$ for each place v of F. Note that if n is odd, then we may take $t = -1$. The sequence splits canonically and gives an isomorphism $H \simeq H^0 \times \mu_2$.

Let $d\epsilon_v$ be the measure on $\mu_2(F_v)$ so that $\text{vol} \mu_2(F_v) = 1$. Then $d\epsilon = \prod_v d\epsilon_v$ is the Tamagawa measure of $\mu_2(\mathbb{A}_F)$. Let Z be the center of H^0. Note that the group Z is trivial unless $n = 2$.

42
Let \(dh\) and \(dh^0\) be the Tamagawa measure of \(Z(\mathbb{A}_F)\backslash H(\mathbb{A}_F)\) and \(Z(\mathbb{A}_F)\backslash H^0(\mathbb{A}_F)\) respectively. Then we have
\[
\int_{Z(\mathbb{A}_F)\backslash H(F)\backslash H(\mathbb{A}_F)} f(h)dh = \int_{\mu_2(F)\backslash\mu_2(\mathbb{A}_F)} \int_{Z(\mathbb{A}_F)\backslash H^0(F)\backslash H^0(\mathbb{A}_F)} \int_{Z(\mathbb{A}_F)\backslash H^0(F)\backslash H^0(\mathbb{A}_F)} f(h^0)dh^0d\epsilon,
\]
for all \(f \in L^1(\mu_2(\mathbb{A}_F))\).

We fix a decomposition \(dh = \prod_v dh_v\) where \(dh_v\) is a measure on \(H(F_v)\). Let \(dh^0_v = 2dh_v|_{H^0(F_v)}\) be a measure on \(H^0(F_v)\). Then \(dh^0 = \prod_v dh^0_v\).

Let \(\pi\) be an irreducible cuspidal automorphic representation of \(H(\mathbb{A}_F)\). We denote by \(V\) the space of automorphic functions on which \(\pi\) is realized. Let \(\pi^0 = \pi|_{H^0(\mathbb{A}_F)}\) and \(V^0 = \{f|_{H^0(\mathbb{A}_F)} \mid f \in V\}\). Let \(\mathcal{S}\) be the set of places \(v\) of \(F\) such that \(\pi_v|_{H^0(F_v)}\) is reducible. This is also the set of places \(v\) of \(F\) so that \(\pi_v \otimes \det_v \simeq \pi_v\). Let \(\mathcal{B}_\pi\) be the Petersson inner product on \(V\) given by
\[
\mathcal{B}_\pi(f,f') = \int_{Z(\mathbb{A}_F)\backslash H(F)\backslash H(\mathbb{A}_F)} f(h)f'(h)dh, \quad f,f' \in V,
\]
We fix a decomposition \(\mathcal{B}_\pi = \prod_v \mathcal{B}_{\pi_v}\) where \(\mathcal{B}_{\pi_v}\) is an inner product on \(\pi_v\).

We distinguish two cases.

Case I: \(\mathcal{S} = \emptyset\).

In this case, \(\pi^0\) is irreducible and the restriction to \(H^0(\mathbb{A}_F)\) as functions induces an isomorphism \(V \simeq V^0\) as representations of \(H^0(\mathbb{A}_F)\). Let \(\mathcal{B}_{\pi^0}\) be the Petersson inner product on \(V^0\) (defined using the Tamagawa measure on \(H^0(\mathbb{A}_F)\)).

Lemma 6.1.1. For any \(f, f' \in V\), we have
\[
\mathcal{B}_{\pi^0}(f|_{H^0(\mathbb{A}_F)}, f'|_{H^0(\mathbb{A}_F)}) = 2\mathcal{B}_\pi(f,f').
\]

Proof. This can be proved in the same way as [10, Lemma 2.1].

Case II: \(\mathcal{S} \neq \emptyset\).

We fix an isomorphism
\[
V \simeq \lim_{\longrightarrow} \left(\bigotimes_{v \in S} V_v \right) \otimes \left(\bigotimes_{v \notin S} \phi_v \right),
\]
where \(V_v\) is the space on which \(\pi_v\) is realized and \(\phi_v\) is an \(H(\mathfrak{o}_{F,v})\)-invariant vector in \(V_v\) for \(v \notin S\).

If \(v \in \mathcal{S}\), then \(\pi_v \otimes \det_v \not\simeq \pi_v\) and \(\pi^0_v \simeq \pi^+_v \oplus \pi^-_v\) where \(\pi^+_v\) are irreducible admissible representations of \(H^0(F_v)\). We have \(V^0_v \simeq V^+_v \oplus V^-_v\) where \(V^*_v\) is the space on which \(\pi^*_v\) are realized and \(* = \pm 0\). Note that \(V^-_v \simeq \pi_v(t)V^+_v\). For almost all places \(v \in \mathcal{S}\), we have \(\phi_v = \phi^+_v + \phi^-_v\) where \(\phi^+_v\) is an \(H^0(\mathfrak{o}_{F,v})\)-invariant element in \(V^+_v\) and \(\phi^-_v = \pi_v(t_v)\phi^+_v\). If \(v \notin \mathcal{S}\), then \(\pi^0_v\) is an irreducible admissible representation on the space \(V_v\).
In this case, by the Hypothesis O, there are two irreducible cuspidal automorphic representations π^+ and π^- so that $\pi^0 \simeq \pi^+ \oplus \pi^-$, $\pi^- \simeq \pi^+ \circ \text{Ad} t$, $V^0 = V^+ \oplus V^-$ where V^\pm are the spaces on which π^\pm are realized. We may label the two irreducible components of π^0_v for $v \in \mathcal{S}$ so that

$$
\pi^\pm \simeq \bigotimes_{v \in \mathcal{S}} \pi^\pm_v \bigotimes_{v \not\in \mathcal{S}} \pi^0_v,
$$

$$
V^\pm = \lim_{\mathcal{S} \to S} \left(\bigotimes_{v \in \mathcal{S}} V^\pm_v \bigotimes_{v \not\in \mathcal{S}} V_v \bigotimes_{v \in \mathcal{S}} \phi^+_v \bigotimes_{v \not\in \mathcal{S}} \phi_v \right).
$$

Let \mathcal{B}_{π^+} be the Petersson inner product on V^+ with a fixed decomposition

$$
\mathcal{B}_{\pi^+} = \prod_{v \in \mathcal{S}} \mathcal{B}_{\pi^+_v} \prod_{v \not\in \mathcal{S}} \mathcal{B}_{\pi_v},
$$

where

- \mathcal{B}_{π_v} is an $H^0(F_v)$ invariant pairing on V^+_v if $v \in \mathcal{S}$ and \mathcal{B}_{π_v} is an $H(F_v)$ invariant pairing on V_v if $v \not\in \mathcal{S}$.
- $\mathcal{B}_{\pi_v^+}(\phi^+_v, \phi^+_v) = \mathcal{B}_v(\phi, \phi) = 1$ for almost all v.

If $v \in \mathcal{S}$, we define an $H^0(F_v)$ invariant pairing on V^-_v by $\mathcal{B}_{\pi^-}(\phi_v, \phi_v) = \mathcal{B}_{\pi_v^+}(\pi_v(t_v)\phi_v, \pi_v(t_v)\phi_v)$. Then for almost all v, we have $\mathcal{B}_{\pi^-}(\phi^-_v, \phi^-_v) = 1$. We then define an $H(F_v)$ invariant pairing on V_v by

$$
\mathcal{B}_v^*(\phi_v, \phi_v) = \begin{cases}
\frac{1}{2}(\mathcal{B}_{\pi_v^+}(\phi^+_v, \phi^+_v) + \mathcal{B}_{\pi^-}(\phi^-_v, \phi^-_v)), & \text{if } v \in \mathcal{S} \\
\mathcal{B}_v(\phi_v, \phi_v), & \text{if } v \not\in \mathcal{S}.
\end{cases}
$$

Then for almost all v, $\mathcal{B}_v^*(\phi_v, \phi_v) = 1$.

Lemma 6.1.2.

$$
\mathcal{B}_{\pi} = \prod_v \mathcal{B}_v^*.
$$

Proof. This can be proved in the same way as [10, Lemma 2.3].

6.2. Ichino–Ikeda’s conjecture for special orthogonal groups. We review Ichino–Ikeda’s conjecture [24, Conjecture 2.1] in this subsection. There is a slight inaccuracy in its orginal formulation in [24] when the multiplicity of the automorphic representation on the even orthogonal group in the discrete automorphic spectrum is two. We will make some modifications to the conjecture in this case.

Let $n \geq 2$ and U_{n+1} and U_n be orthogonal spaces of dimension $n+1$ and n with an embedding $U_n \subset U_{n+1}$. Let $H_i^0 = \text{SO}(U_i)$ $(i = n, n+1)$. Let dh be the Tamagawa measure on $H_i^0(\mathbb{A}_F)$ and
we fix a decomposition \(dh = \prod_v dh_v\) where \(dh_v\) is a Haar measure on \(H^0_n(F_v)\) and \(\text{vol} H^0_n(\mathfrak{o}_{F,v}) = 1\) for almost all \(v\).

Let \(\pi_{n+1} = \otimes_v \pi_{n+1,v}\) and \(\pi_n = \otimes_v \pi_{n,v}\) be irreducible cuspidal tempered automorphic representations of \(H^0_n(\mathbb{A}_F)\) and \(H^0_n(\mathbb{A}_F)\) respectively. Let \(V_{n+1} = \otimes_v V_{n+1,v}\) and \(V_n = \otimes_v V_{n,v}\) be the space on which \(\pi_{n+1}\) and \(\pi_n\) are realized respectively. Let \(B_{\pi_{n+1}}\) and \(B_{\pi_n}\) be the Petersson inner products on \(V_{n+1}\) (resp. \(V_n\)) respectively. We fix a decomposition

\[
B_{\pi_{n+1}} = \prod_v B_{\pi_{n+1,v}}, \quad B_{\pi_n} = \prod_v B_{\pi_n,v}
\]

where \(B_{\pi_{n+1,v}}\) and \(B_{\pi_n,v}\) are inner products on \(V_{n+1,v}\) and \(V_{n,v}\) respectively.

Let \(f_{n+1} = \otimes f_{n+1,v}, f'_{n+1} = \otimes f'_{n+1,v} \in V_{n+1}\) and \(f_n = \otimes f_{n,v}, f'_{n} = \otimes f'_{n,v} \in V_{n}\). Define

\[
\mathcal{J}(f_{n+1}, f'_{n+1}, f_n, f'_{n}) = \int_{H^0_n(F) \backslash H^0_n(\mathbb{A}_F)} f_{n+1}(h) f_n(h) dh \cdot \int_{H^0_n(F) \backslash H^0_n(\mathbb{A}_F)} f'_{n+1}(h) f'_n(h) dh.
\]

For each place \(v\), we define

\[
\mathcal{J}_v(f_{n+1,v}, f'_{n+1,v}, f_{n,v}, f'_{n,v}) = \int_{H^0_n(F_v)} B_{\pi_{n+1,v}}(f_{n+1,v}(h), f_{n+1,v}, f'_{n+1,v}, f'_{n+1,v}) B_{\pi_n,v}(f_{n,v}(h), f_{n,v}, f'_{n,v}, f'_{n,v}) dh_v.
\]

Let \(S\) be a sufficiently large finite set of places of \(F\) containing all archimedean places so that if \(v \not\in S\), then \(f_{n+1,v}, f'_{n+1,v}\) (resp. \(f_{n,v}, f'_{n,v}\)) are \(H^0_n(\mathfrak{o}_{F,v})\) (resp. \(H^0_n(\mathfrak{o}_{F,v})\)) fixed and \(B_{\pi_{n+1,v}}(f_{n+1,v}, f'_{n+1,v}) = B_{\pi_n,v}(f_{n,v}, f'_{n,v}) = 1\). In particular, \(\pi_{n+1,v}\) and \(\pi_{n,v}\) are both unramified if \(v \not\in S\). Let \(\{\alpha_{1,v}, \ldots, \alpha_{[\frac{n+1}{2}],v}\}\) and \(\{\beta_{1,v}, \ldots, \beta_{[\frac{n}{2}],v}\}\) be the Satake parameters of \(\pi_{n+1,v}\) and \(\pi_{n,v}\) respectively. Let

\[
A_{n+1,v} = \text{diag}[\alpha_{1,v}, \ldots, \alpha_{[\frac{n+1}{2}],v}, \alpha_{[\frac{n+1}{2}],v}^{-1}, \ldots, \alpha_{1,v}^{-1}]
\]

\[
A_{n,v} = \text{diag}[\beta_{1,v}, \ldots, \beta_{[\frac{n}{2}],v}, \beta_{[\frac{n}{2}],v}^{-1}, \ldots, \beta_{1,v}^{-1}]
\]

Let

\[
L^S(s, \pi_{n+1} \times \pi_n) = \prod_{v \not\in S} \det(1 - A_{n+1,v} \otimes A_{n,v} \cdot q_v^{-s})^{-1}
\]

be the tensor product \(L\)-function and \(L^S(s, \pi_{n+1}, \text{Ad})\) and \(L^S(s, \pi_n, \text{Ad})\) be the adjoint \(L\)-functions.

Conjecture 6.2.1 (Ichino–Ikeda [24, Conjecture 2.1]). (1) Suppose that \(\pi_{n+1}\) and \(\pi_n\) appear with multiplicity one in the discrete spectrum. Then the automorphic realization \(V_{n+1}\) (resp. \(V_n\)) of \(\pi_{n+1}\) (resp. \(\pi_n\)) is canonical. We have

\[
\mathcal{J}(f_{n+1}, f'_{n+1}, f_n, f'_{n}) = \frac{1}{|S_{\pi_{n+1}}| |S_{\pi_n}|} \Delta_{H^0_n}^S \frac{L^S(\frac{1}{2}, \pi_{n+1} \times \pi_n)}{L^S(1, \pi_{n+1}, \text{Ad}) L^S(1, \pi_n, \text{Ad})} \prod_{v \in S} \mathcal{J}_v(f_{n+1,v}, f'_{n+1,v}, f_{n,v}, f'_{n,v}).
\]
(2) Suppose \(n \) is odd and \(\pi_{n+1} \) appears with multiplicity two in the discrete spectrum of \(H_{n+1}^0(\mathbb{A}_F) \). Then the automorphic realization \(V_n \) of \(\pi_n \) is canonical. Let \(L_{\pi_{n+1}}^2 \) be the isotypic component of \(\pi_{n+1} \) in the discrete automorphic spectrum of \(H_{n+1}^0(\mathbb{A}_F) \). Then there are two possibilities.

(a) The linear form \(\mathcal{J} \) is identically zero on \(L_{\pi_{n+1}}^2 \times L_{\pi_{n+1}}^2 \times V_n \times V_n \). This is equivalent to that either \(\text{Hom}_{H_n^0(\mathbb{A}_F)}(\pi_{n+1} \otimes \pi_n, \mathbb{C}) = 0 \) or \(L^S(\frac{1}{2}, \pi_{n+1} \times \pi_n) = 0 \).

(b) There is a unique irreducible subrepresentation \(V_{n+1} \) of \(L_{\pi_{n+1}}^2 \) such that it is invariant under the outer automorphism of \(H_{n+1}^0 \) and \(\mathcal{J} \) is not identically zero on \(V_{n+1} \times V_{n+1} \times V_n \times V_n \). We have

\[
\mathcal{J}(f_{n+1}, f'_{n+1}, f_n, f'_n) = \frac{2}{|S_{\pi_{n+1}}||S_{\pi_n}|} \frac{L^S(\frac{1}{2}, \pi_{n+1} \times \pi_n)}{\prod_{v \in S} L_v(f_{n+1,v}, f'_{n+1,v}, f_{n,v}, f'_n,v)},
\]

if \(f_{n+1}, f'_{n+1} \in V_{n+1} \), \(f_n, f'_n \in V_n \). Let \(V'_{n+1} \) (\(\neq V_{n+1} \)) be the other irreducible subrepresentation of \(L_{\pi_{n+1}}^2 \) that is invariant under the outer automorphism of \(H_{n+1}^0 \).

Then \(\mathcal{J} \) is identically zero on \(V'_{n+1} \times V'_{n+1} \times V_n \times V_n \).

If \(n \) is even, then we have a similar statement, with the role of \(\pi_{n+1} \) and \(\pi_n \) being switched.

Remark 6.2.2. The same inaccuracy also occurs in [36]. One also needs to modify [36, Conjecture 2.5] in a similar way when the automorphic representation on the even orthogonal group has multiplicity two. In this case, the automorphic realization is required to be invariant under the outer twist and (in the notation of [36]) \(1/|S_{\Psi(\pi_2)}||S_{\Psi(\pi_0)}| \) needs to be replaced by \(2/|S_{\Psi(\pi_2)}||S_{\Psi(\pi_0)}| \).

6.3. Ichino–Ikeda’s conjecture for full orthogonal groups. Let \(U_{n+1} \) and \(U_n \) be orthogonal spaces of dimension \(n+1 \) and \(n \) with an embedding \(U_n \subset U_{n+1} \). Let \(H_i = O(U_i) \) and \(H_i^0 = \text{SO}(U_i) \) \((i = n, n + 1) \). Let \(dh \) be the Tamagawa measure on \(H_n(\mathbb{A}_F) \) and we fix a decomposition \(dh = \prod_v dh_v \) where \(dh_v \) is a Haar measure on \(H_n(F_v) \) and \(\text{vol} H_n(\mathfrak{o}_{F_v}) = 1 \) for almost all \(v \).

Let \(\pi_{n+1} = \otimes_v \pi_{n+1,v} \) and \(\pi_n = \otimes_v \pi_{n,v} \) be irreducible cuspidal tempered automorphic representations of \(H_{n+1}(\mathbb{A}_F) \) and \(H_n(\mathbb{A}_F) \) respectively. Let \(V_{n+1} = \otimes_v V_{n+1,v} \) and \(V_n = \otimes_v V_{n,v} \) be the space on which \(\pi_{n+1} \) and \(\pi_n \) are realized respectively. Let \(B_{\pi_{n+1}} \) and \(B_{\pi_n} \) be the Petersson inner products on \(V_{n+1} \) (resp. \(V_n \)) respectively. We fix a decomposition

\[
B_{\pi_{n+1}} = \prod_v B_{\pi_{n+1,v}}, \quad B_{\pi_n} = \prod_v B_{\pi_{n,v}}
\]

where \(B_{\pi_{n+1,v}} \) and \(B_{\pi_{n,v}} \) are inner products on \(V_{n+1,v} \) and \(V_{n,v} \) respectively.
Let \(f_{n+1} = \otimes f_{n+1,v} \in V_{n+1} \) and \(f_n = \otimes f_{n,v} \in V_n \). Define

\[
(6.3.1) \quad \mathcal{I}(f_{n+1}, f_n) = \int_{H_n(F) \backslash H_n(\mathbb{A}_F)} f_{n+1}(h)f_n(h) \, dh \cdot \int_{H_n(F) \backslash H_n(\mathbb{A}_F)} f_{n+1}(h)f_n(h) \, dh.
\]

For each place \(v \), we define

\[
(6.3.2) \quad \mathcal{I}_v(f_{n+1,v}, f_{n,v}) = \int_{H_n(F_v)} \mathcal{B}_{n+1,v}(\pi_{n+1,v}^{(v)} f_{n+1,v}, f_{n+1,v}) \mathcal{B}_{n,v}(\pi_{n,v}^{(v)} f_{n,v}, f_{n,v}) \, dh_v.
\]

Let \(S \) be a sufficiently large finite set of places of \(F \) containing all archimedean places so that if \(v \not\in S \), then \(f_{n+1,v} \) (resp. \(f_{n,v} \)) is \(H_n + (a_{F,v}) \) (resp. \(H_n(a_{F,v}) \)) fixed and \(\mathcal{B}_{n+1,v}(f_{n+1,v}, f_{n+1,v}) = \mathcal{B}_{n,v}(f_{n,v}, f_{n,v}) = 1 \). In particular, \(\pi_{n+1,v} \) and \(\pi_{n,v} \) are both unramified if \(v \not\in S \). We define the partial \(L \)-functions

\[
L^S(s, \pi_{n+1} \times \pi_n) = L^S(s, \tilde{\pi}_{n+1} \times \hat{\pi}_n), \quad L^S(s, \pi_i, \text{Ad}) = L^S(s, \tilde{\pi}_i, \text{Ad}), \quad i = n, n + 1,
\]

where \(\tilde{\pi}_i \) is an irreducible constituent of \(\pi_i^0 \) which is invariant by the nontrivial outer automorphism \(\epsilon \). The \(L \)-functions on the right hand side of each equality is independent of the choice of this irreducible constituent.

The Ichino–Ikeda’s conjecture for the full orthogonal group is the following.

Conjecture 6.3.1. We have

\[
(6.3.3) \quad \mathcal{I}(f_{n+1}, f_n) = \frac{2\gamma}{|S_{\pi_{n+1}}||S_{\pi_n}|} \Delta_{H_{n+1}} \frac{L^S(\frac{1}{2}, \pi_{n+1} \times \pi_n)}{\prod_{v \in S} \mathcal{I}_v(f_{n+1,v}, f_{n,v})}.
\]

where \(\gamma \) is given as follows. Suppose \(n \) is even (resp. odd). Let \(\Psi_{\pi_n} = \mp \Pi_i \) (resp. \(\Psi_{\pi_n+1} = \mp \Pi_i \)) where \(\Pi_i \) is an irreducible cuspidal automorphic representation of \(\text{GL}_{N_i}(\mathbb{A}_F) \). Then \(\gamma = 0 \) (resp. 1) if at least one of \(N_i \)'s is odd (resp. all \(N_i \)'s are even).

Remark 6.3.2. We may have a neater formulation of the conjecture if we replace our definition of the centralizers \(S_{\pi_i} \) by the one given in [4] for parameters of full orthogonal groups. We stick to our current formulation as it is more convenient for the applications in this paper.

Similar to Conjecture 2.3.1, we may rewrite the identity (6.3.3) in an equivalent form, which does not involve the finite set \(S \). We may define the completed \(L \)-function

\[
L(s, \pi_{n+1} \times \pi_n) = \prod_v L(s, \pi_{n+1,v} \times \pi_{n,v}), \quad L(s, \pi_i, \text{Ad}) = \prod_v L(s, \pi_{i,v}, \text{Ad}), \quad i = n, n + 1.
\]

The actually definition of the local Euler factors outside the set \(S \) is irrelevant to our discussion since the conjecture does not reply on how these Euler factors are defined. Let

\[
\mathcal{L} = \Delta H_{n+1} \frac{L(\frac{1}{2}, \pi_{n+1} \times \pi_n)}{L(1, \pi_{n+1}, \text{Ad}) L(1, \pi_n, \text{Ad})},
\]

47
and by L_v the Euler factor of L at the place v. We define
\[T^2_v = L_v^{-1} \cdot I_v. \]

Then Conjecture 6.3.1 can be written as a decomposition of linear forms
\[I = \frac{2^\gamma}{|S_{\pi_{n+1}}| |S_{\pi_n}|} L \cdot \prod_v T^2_v. \]

The product on the right hand side ranges over all places v of F. It is convergent since for almost all v, i.e., $v \not\in S$, $T^2_v = 1$. We may write Conjecture 6.2.1 in a similar forms.

Proposition 6.3.3. Conjecture 6.3.1 follows from Conjecture 6.2.1.

Proof. We assume that n is odd. The case n being even can be handled similarly, with modifications of notation at various places. Then $H_n \simeq H^0_n \times \mu_2$. So $\pi^0_{n,v}$ is irreducible for all places v of F. Let \mathfrak{S} be the set of places of F such that $\pi^0_{n+1,v}$ is reducible.

If $v \not\in S$, then $f_{n+1,v} = \phi_{n+1,v}$ is fixed by $H_{n+1}(\sigma_F,v)$ and $f_{n,v}$ is fixed by $H_n(\sigma_F,v)$. We may further assume that $f_{n+1,v} = f_{n+1,v} \in V^+_{n+1}$ if $v \in S \cap \mathfrak{S}$. Thus
\[f_{n+1,v} = \prod_{v \in S' \cap \mathfrak{S}} f_{n+1,v}^{+} \prod_{v \in S, v \not\in \mathfrak{S}} f_{n+1,v} \prod_{v \not\in S} \phi_{n+1,v}. \]

Put
\[S' = S \setminus (S \cap \mathfrak{S}), \quad s = |S \cap \mathfrak{S}|, \quad s' = |S'|. \]

For any finite set of places T of F, we define $F_T = \prod_{v \in T} F_v$.

If $\mathfrak{S} \not= \emptyset$, then
\[\int_{H_n(F) \setminus H_n(\mathfrak{S}_F)} f_{n+1}(h) f_n(h) dh \]
\[= \frac{1}{2s+s'+1} \sum_{\epsilon \in \mu_2(F_S')} \int_{H^0_n(F) \setminus H^0_n(\mathfrak{S}_F)} f_{n+1}(h\epsilon) f_n(h\epsilon) dh \]
\[= \frac{1}{2s+s'+1} \sum_{\epsilon \in \mu_2(F_S')} \int_{H^0_n(F) \setminus H^0_n(\mathfrak{S}_F)} (f_{n+1}(h\epsilon) f_n(h\epsilon) + f_{n+1}(h\epsilon t) f_n(h\epsilon t)) dh \]
\[= \frac{1}{2s+s'} \sum_{\epsilon \in \mu_2(F_S')} \int_{H^0_n(F) \setminus H^0_n(\mathfrak{S}_F)} f_{n+1}(h\epsilon) f_n(h\epsilon) dh. \]

If $\mathfrak{S} = \emptyset$, then
\[\int_{H_n(F) \setminus H_n(\mathfrak{S}_F)} f_{n+1}(h) f_n(h) dh = \frac{1}{2^{s+1}} \sum_{\epsilon \in \mu_2(F_S)} \int_{H^0_n(F) \setminus H^0_n(\mathfrak{S}_F)} f_{n+1}(h\epsilon) f_n(h\epsilon) dh. \]

We fix a decomposition
\[\mathcal{B}_{n+1}^{\pi+} = \prod_{v \in \mathfrak{S}} \mathcal{B}_{n+1,v}^{\pi+} \prod_{v \not\in \mathfrak{S}} \mathcal{B}_{n+1,v}^{\pi 0}, \quad \text{resp.} \quad \mathcal{B}_{n+1}^{\pi 0} = 2 \prod_{v} \mathcal{B}_{n+1,v}^{\pi 0}. \]
if \(\mathcal{S} \neq \emptyset \) (resp. \(\mathcal{S} = \emptyset \)), so that \(B_{\pi_{n+1,v}} = B_{\pi_{n+1,v}}^2 \) if \(v \in \mathcal{S} \) (resp. \(B_{\pi_{n+1,v}} = B_{\pi_{n+1,v}}^0 \) if \(v \notin \mathcal{S} \)).

We fix a decomposition

\[
B_{\pi} = 2 \prod_v B_{\pi_v},
\]

so that \(B_{\pi_{n,v}} = B_{\pi_{n,v}}^0 \).

We say that we are in the exceptional case if the following conditions are satisfied.

- \(\pi_{n+1}^0 \) is irreducible and appears with multiplicity two in the discrete spectrum of \(H_{n+1}^0(A_F) \).
- The period integral

\[
\int_{H_n^0(F) \backslash H_n^0(A_F)} f_n(h)dh
\]

is identically zero on \(V_{n+1}^0 \times V_n^0 \), where we denote as before \(V_i^0 = \{ f|_{H_i^0(A_F)} \mid f \in V_i \} \), \(i = n, n + 1 \).
- The period integral is not identically zero on the isotypic component of \(\pi_{n+1}^0 \).

Suppose that we are not in the exceptional case. Then Conjecture 6.2.1 implies that

\[
\mathcal{I}(f_{n+1}, f_n) = \frac{2^m \gamma'}{2^{2s+2s'}|S_{\gamma_{n+1}} - |S_{\gamma_n}|} \Delta_{H_{n+1}} \frac{L^S(1, \pi_{n+1} \times \pi_n)}{L^S(1, \pi_{n+1}, \text{Ad})L^S(1, \pi_n, \text{Ad})} \sum_{\epsilon, \epsilon' \in \mu_2(F_{v'})} \prod_{v \in S} J_v(\pi_{n+1}(\epsilon)f_{n+1,v}, \pi_{n+1}(\epsilon')f_{n+1,v}, \pi_n(\epsilon)f_{n,v}, \pi_n(\epsilon')f_{n,v}),
\]

where

- \(\gamma' = 1 \) (resp. 0) if \(\pi_{n+1}^0 \) is reducible (resp. irreducible).
- \(m = 1 \) (resp. 0) if \(\pi_{n+1}^0 \) is irreducible and appears with multiplicity two (resp. any irreducible constituent appears with multiplicity one) in the discrete spectrum of \(H_{n+1}^0(A_F) \).

We note that \(\gamma = m + \gamma' \). In fact, in the first (resp. second, resp. third) case in Hypothesis O, we have \(\gamma = \gamma' = m = 0 \) (resp. \(\gamma = 1, m = 1, \gamma' = 0 \), resp. \(\gamma = 1, m = 0, \gamma' = 1 \)).

Therefore to deduce Conjecture 6.3.1 from Conjecture 6.2.1, we only need to prove the following two identities. If \(v \in \mathcal{S} \), then

\[
\frac{1}{4} J_v(f_{n+1,v}, f_{n+1,v}, f_{n,v}, f_{n,v}) = \mathcal{I}_v(f_{n+1,v}, f_{n,v}).
\]

If \(v \notin \mathcal{S} \), then

\[
\frac{1}{4} \sum_{\epsilon, \epsilon' \in \mu_2(F_v)} J_v(\pi_{n+1}(\epsilon)f_{n+1,v}, \pi_{n+1}(\epsilon')f_{n+1,v}, \pi_n(\epsilon)f_{n,v}, \pi_n(\epsilon')f_{n,v}) = \mathcal{I}_v(f_{n+1,v}, f_{n,v}).
\]

These two identities can be proved in the same way as [24, Lemma 3.4]. Therefore Conjecture 6.3.1 follows from Conjecture 6.2.1 if we are not in the exceptional case.

Now assume that we are in the exceptional case. Let \(\pi_{n+1}^0 \) be an irreducible cuspidal automorphic representation of \(H_{n+1}^0(A_F) \) which realizes on \(V_{n+1}^0 \) such that \(V_{n+1}^0 \) is invariant under...
the outer automorphism of H_{n+1}^0, $V_{n+1}^0 \neq V_n^0$ and π_{n+1}^0 is isomorphic to π_n^0 (as abstract representations). Then the period integral

$$\int_{H_n^0(F) \backslash H_n^0(\mathbb{A}_F)} f_{n+1}(h)f_n(h)dh$$

is not identically zero on $V_{n+1}^0 \times V_n^0$. Therefore

$$\text{Hom}_{H_n^0(\mathbb{A}_F)}(\pi_{n+1}^0 \otimes \pi_n^0, \mathbb{C}) \neq 0.$$

Since V_{n+1}^0 is invariant under the outer automorphism of H_{n+1}^0, there is an automorphic representation π_{n+1}' of $H_{n+1}(\mathbb{A}_F)$ which is realized on V_{n+1}' whose restriction to $H_{n+1}^0(\mathbb{A}_F)$ is V_{n+1}^0.

Let T be a finite subset of places of F and we let \det_T be the character of $H_{n+1}(\mathbb{A}_F)$ defined by

$$(g_v) \mapsto \prod_{v \in T} \det g_v \in \{\pm 1\}, \quad (g_v) \in H_{n+1}(\mathbb{A}_F).$$

Then \det_T is automorphic if and only if $|T|$ is even.

Note that $n \geq 3$ in this case. Let $Z_n \simeq \mu_2$ be the center of H_n and it is identified with a subgroup of H_{n+1} via the embedding $H_n \to H_{n+1}$. Let $l = \otimes_{v} l_v \in \text{Hom}_{H_n^0(\mathbb{A}_F)}(\pi_{n+1}' \otimes \pi_n, \mathbb{C})$ and $\theta = (\theta_v) \in Z_n(\mathbb{A}_F)$. Let $l^\theta = \otimes_{v} l_v^\theta \in \text{Hom}_{H_n^0(\mathbb{A}_F)}(\pi_{n+1}' \otimes \pi_n, \mathbb{C})$ be defined by

$$l_v^\theta(\xi_{n+1,v} \otimes \xi_n,v) = l_v(\pi_{n+1,v}(\theta_v)\xi_{n+1,v} \otimes \pi_n,v(\theta_v)\xi_{n,v}),$$

Since $\theta_n^2 = 1$ and $\dim \text{Hom}_{H_n^0(F_v)}(\pi_{n+1}' \otimes \pi_n,v, \mathbb{C}) = 1$, we have $l_v^\theta = \pm l_v$. It follows that there is finite set T of places of F so that $l^\theta = \det_T(\theta) \cdot l$. Since π_{n+1}' and π_n are automorphic, \det_T is also automorphic. It follows that $|T|$ is even.

Let $\pi_{n+1}'' = \pi_{n+1}' \otimes \det_T$. Then π_{n+1}'' is an automorphic representation of $H_{n+1}(\mathbb{A}_F)$ and is realized on V_{n+1}''. Its restriction to $H_{n+1}^0(\mathbb{A}_F)$ is V_{n+1}^0. Moreover for any place v of F,

$$\text{Hom}_{H_n(F_v)}(\pi_{n+1,v}'', \pi_n,v, \mathbb{C}) \neq 0.$$

Since π_{n+1} and π_{n+1}'' are not isomorphic but their restrictions to $H_{n+1}^0(\mathbb{A}_F)$ are isomorphic, there is at least one place v, such that $\pi_{n+1,v} \simeq \pi_{n+1,v}'' \otimes \det_v$. We claim that

$$\text{Hom}_{H_n(F_v)}(\pi_{n+1,v} \otimes \pi_n,v, \mathbb{C}) = 0.$$

In fact, $\text{Hom}_{H_n(F_v)}(\pi_{n+1,v}'' \otimes \pi_n,v, \mathbb{C}) \neq 0$ is the $+1$ eigenspace of $\theta_v = -1 \in Z_n(F_v)$ on $\text{Hom}_{H_n^0(F_v)}(\pi_{n+1,v} \otimes \pi_n,v, \mathbb{C})$ while $\text{Hom}_{H_n(F_v)}(\pi_{n+1,v} \otimes \pi_n,v, \mathbb{C})$ is the -1 eigenspace. Since $\dim \text{Hom}_{H_n^0(F_v)}(\pi_{n+1,v} \otimes \pi_n,v, \mathbb{C}) = \dim \text{Hom}_{H_n(F_v)}(\pi_{n+1,v}'' \otimes \pi_n,v, \mathbb{C}) = 1$, we conclude that $\text{Hom}_{H_n(F_v)}(\pi_{n+1,v} \otimes \pi_n,v, \mathbb{C}) = 0$.

It follows that the linear form \mathcal{I}_v is identically zero in the exceptional case. Therefore both sides of (6.3.3) are zero. \qed
7. COMPATIBILITY WITH ICHINO–IKEĐA’S CONJECTURE: $\text{Sp}(2n) \times \text{Mp}(2n)$

7.1. The Theorem. The goal of this section is to study Conjecture 2.3.1 for $\text{Sp}(2n) \times \text{Mp}(2n)$. We are going to show that Conjecture 2.3.1 is compatible with Ichino–Ikeda’s conjecture for $\text{SO}(2n + 1) \times \text{SO}(2n)$ in some cases. Result of this sort for unitary groups appeared in [50, Proposition 1.4.1]. The local counterpart of this argument has been used to establish the local Gan–Gross–Prasad conjecture for the Fourier–Jacobi models [3,11].

Let $\lambda \in F^\times$. Let (V,q_V) be a $2n + 1$-dimensional orthogonal space and V_λ is a $2n$-dimensional subspace such that V_λ^\perp is a one dimensional orthogonal space of discriminant λ. Let $H = \text{O}(V)$ and $H_\lambda = \text{O}(V_\lambda)$ and $i_\lambda : H_\lambda \to H$ be the natural embedding.

Let W be a $2n$-dimensional symplectic space and $G = \text{Sp}(W)$, $\tilde{G} = \text{Mp}(W)$. Let $\tilde{\Omega}_\psi$ (resp. Ω_ψ) be the Weil representation of $\tilde{G}(\mathbb{A}_F) \times H(\mathbb{A}_F)$ (resp. $G(\mathbb{A}_F) \times H_\lambda(\mathbb{A}_F)$) which is realized on $S(V(\mathbb{A}_F)^n)$ (resp. $S(V_\lambda(\mathbb{A}_F)^n)$). Let $\omega_{\psi,\lambda}$ be the Weil representation of $\tilde{G}(\mathbb{A}_F)$ realized on $S(\mathbb{A}_F^n)$.

Then we have the theta series

$$\Theta_\psi(g,h,\Phi), \quad \Theta_\psi(g,h,\Phi_\lambda), \quad \theta_{\psi,\lambda}(g,\phi)$$

on $\tilde{G}(\mathbb{A}_F) \times H(\mathbb{A}_F)$, $G(\mathbb{A}_F) \times H_\lambda(\mathbb{A}_F)$ and $\tilde{G}(\mathbb{A}_F)$ respectively, where $\Phi \in S(V(\mathbb{A}_F)^n)$, $\Phi_\lambda \in S(V_\lambda(\mathbb{A}_F)^n)$ and $\phi \in S(\mathbb{A}_F^n)$.

Let π be an irreducible cuspidal tempered genuine automorphic representation of $\tilde{G}(\mathbb{A}_F)$. Let $\tilde{\Theta}_\psi(\pi)$ be the theta lift of π to $H(\mathbb{A}_F)$, i.e. the automorphic representation generated by the functions of the form

$$\tilde{\Theta}_\psi(\varphi,\Phi)(\cdot) = \int_{G(F)\backslash G(\mathbb{A}_F)} \overline{\varphi(g)}\tilde{\Theta}_\psi(g,\cdot,\Phi)dg, \quad \varphi \in \mathcal{S}, \quad \Phi \in S(V(\mathbb{A}_F)^n).$$

Let σ be an irreducible cuspidal tempered automorphic representation of $H_\lambda(\mathbb{A}_F)$. Let $\Theta_\psi(\sigma)$ be the theta lift of σ to $G(\mathbb{A}_F)$, i.e. the automorphic representation generated by the functions of the form

$$\Theta_\psi(f,\Phi_\lambda)(\cdot) = \int_{H_\lambda(F)\backslash H_\lambda(\mathbb{A}_F)} \overline{f(h_\lambda)}\Theta_\psi(\cdot,h_\lambda,\Phi_\lambda)dh_\lambda, \quad f \in \sigma, \quad \Phi_\lambda \in S(V_\lambda(\mathbb{A}_F)^n).$$

Theorem 7.1.1. Suppose that $\tilde{\Theta}_{\psi,-1}(\pi)$ and $\Theta_\psi(\sigma)$ are both cuspidal (possibly zero). If Conjecture 6.3.1 holds for $(\tilde{\Theta}_{\psi,-1}(\pi),\sigma)$, then Conjecture 2.3.1(3) holds for $(\pi,\Theta_\psi(\sigma))$ with the additive character $\psi_{-\lambda}$.

Remark 7.1.2. We have shown in Proposition 6.3.3 that Conjecture 6.3.1 can be deduced from the original conjecture of Ichino–Ikeda (Conjecture 6.2.1). The theorem thus says that Conjecture 2.3.1(3) and Ichino–Ikeda’s conjecture are compatible in this situation. The same remark also applies to Theorem 8.1.1 in the next section.
7.2. A seesaw diagram. The proof of Theorem 7.1.1 is very similar to [50, Proposition 1.4.1]. It makes use of the following seesaw diagram.

\[
\begin{array}{c}
G \times \tilde{G} \\
\downarrow \\
\tilde{G} \\
H = H \times O(V^\perp_{\lambda})
\end{array}
\]

Suppose that \(f = \otimes f_v \in \sigma, \varphi = \otimes \varphi_v \in \pi, \Phi_{\lambda} = \otimes \Phi_{\lambda,v} \in S(V_{\lambda}(\mathbb{A}_F)^n) \) and \(\phi = \otimes \phi_v \in S(\mathbb{A}_F^n) \) are all factorizable.

Lemma 7.2.1. We have

\[
\mathcal{F} \mathcal{J}_{\psi_{-\lambda}}(\varphi, \Theta_{\psi}(f, \Phi_{\lambda}), \phi) = \int_{H_{\lambda}(F) \setminus H(\mathbb{A}_F)} f(h) \Theta_{\psi_{-\lambda}}(\varphi, \overline{\Phi_{\lambda}} \otimes \phi)(\iota_{\lambda}(h))dh.
\]

Proof.

\[
\begin{align*}
\mathcal{F} \mathcal{J}_{\psi_{-\lambda}}(\varphi, \Theta_{\psi}(f, \Phi_{\lambda}), \phi) &= \int_{G(F) \setminus G(\mathbb{A}_F)} \int_{H_{\lambda}(F) \setminus H(\mathbb{A}_F)} \varphi(g) \overline{f(h)} \Theta_{\psi}(g, h, \Phi_{\lambda}) \overline{\Theta_{\psi_{-\lambda}}(g, \phi)} dh dg \\
&= \int_{H_{\lambda}(F) \setminus H(\mathbb{A}_F)} \int_{G(F) \setminus G(\mathbb{A}_F)} \varphi(g) \overline{\Theta_{\psi}(g, \iota_{\lambda}(h), \Phi_{\lambda} \otimes \phi)} f(h) dg dh \\
&= \int_{H_{\lambda}(F) \setminus H(\mathbb{A}_F)} f(h) \Theta_{\psi_{-\lambda}}(\varphi, \overline{\Phi_{\lambda}} \otimes \phi)(\iota_{\lambda}(h))dh.
\end{align*}
\]

□

Let \(v \) be a place of \(F \). We use \(B \) to denote the inner products on various unitary representations.

Lemma 7.2.2. The integral

\[
\int_{H_{\lambda}(F_v) \setminus G(F_v)} \overline{B(\sigma_v(h)f_v, f_v)} \overline{B(\Omega_{\psi_v}(g, h)\Phi_{\lambda,v}, \Phi_{\lambda,v})} B(\pi_v(g)\varphi_v, \varphi_v) \overline{B(\omega_{\psi_{-\lambda,v}}(g)\phi_v, \phi_v)} dg dh
\]

is absolutely convergent.

Proof. To simplify notation, we suppress the subscript \(v \) from the notation in the proof. Put

\[
\Upsilon(x) = \begin{cases}
1, & |x| \leq 1; \\
|x|^{-1}, & |x| > 1.
\end{cases}
\]

By the weak inequality (3.1.5) and the estimates (3.1.2), (3.1.4), it is enough to prove that the double integral

\[
(7.2.1) \quad \int_{A_{H_{\lambda}}^+} \int_{A_G^+} \delta_{H_{\lambda}}^{-\frac{1}{2}}(b) \delta_G^{-\frac{1}{2}}(a) |a_1 \cdots a_n|^{\frac{2n+2}{2}} \prod_{i=1}^{n} \prod_{j=1}^{r} \Upsilon(a_i b_j^{-1}) \zeta(a)^M \zeta(b)^M dadb
\]

52
is convergent, where \(M \) is some positive real number, \(r \) is the Witt index of \(V_\lambda \) and

\[
a = \text{diag}[a_1, \ldots, a_n, a_n^{-1}, \ldots, a_1^{-1}] \in A_G^+, \quad b = \text{diag}[b_1, \ldots, b_r, 1, \ldots, 1, b_r^{-1}, \ldots, b_1^{-1}] \in A_{H_\lambda}^+.
\]

We assume that \(r < n \). The case \(r = n \) is very similar and needs only a slight modification. We left it to the interested readers.

We have \(|b_1| \leq \cdots \leq |b_r| \leq 1 \). Let \(\hat{j} = (j_1, \ldots, j_r) \) be \(r \) nonnegative integers such that \(j_1 + \cdots + j_r \leq n \) and let \(I_{\hat{j}} \) be the subset of \(A_G^+ \times A_{H_\lambda}^+ \) consisting of elements

\[
a_1 \leq \cdots \leq a_{j_1} \leq b_1 \leq a_{j_1+1} \leq \cdots \leq a_{j_1+j_2} \leq b_2 \leq \cdots \leq b_r \leq a_{j_1+\cdots+j_r+1} \leq \cdots \leq a_n \leq 1.
\]

Then \(A_G^+ \times A_{H_\lambda}^+ = \bigcup_{\hat{j}} I_{\hat{j}} \). Thus it is enough to prove the convergence of \((7.2.1)\) when the domain is replaced by \(I_{\hat{j}} \).

Over the region \(I_{\hat{j}} \), the integrand of \((7.2.1)\) equals

\[
|a_1|^{\frac{1}{2}} \cdots |a_{j_1}|^{\frac{2j_1+1}{2}} |b_1|^{-j_1+1} |a_{j_1+1}|^{\frac{2j_1+1}{2}} \cdots |a_{j_1+j_2}|^{\frac{2j_1+2j_2-3}{2}} |b_2|^{-j_1-j_2+2} \cdots |b_r|^{-j_1-\cdots-j_r+r} |a_{j_1+\cdots+j_r+1}|^{\frac{2j_1+\cdots+j_r+1-2r}{2}} \cdots |a_n|^{\frac{2n-1-2r}{2}}.
\]

Then lemma then follows from the following elementary fact.

Fact. Fix \(D \) a positive real number. The integral

\[
\int_{|x_1| \leq \cdots \leq |x_s| \leq 1} |x_1|^{n_1-1} \cdots |x_s|^{n_s-1} \left(-\sum_{i=1}^s \log |x_i| \right)^D dx_1 \cdots dx_s
\]

is convergent if \(n_1 + \cdots n_t > 0 \) for all \(1 \leq t \leq s \). \(\square \)

7.3. Proof of Theorem 7.1.1

Let \(S \) be a sufficiently large finite set of places of \(F \), such that if \(v \not\in S \), then the following conditions hold.

1. \(v \) is non-archimedean, 2 and \(\lambda \) are in \(\sigma_{F,v}^\times \), the conductor of \(\psi_v \) is \(\sigma_{F,v} \).
2. The group \(A \) is unramified with a hyperspecial subgroup \(A(o_{F,v}) \), where \(A = H, H_\lambda, G \).
3. \(f_v \) is \(H_\lambda(o_{F,v}) \) fixed and \(\varphi_v \) is \(G(o_{F,v}) \) fixed. Moreover \(B(f_v, f_v) = B(\varphi_v, \varphi_v) = 1 \).
4. \(\Phi_\lambda \) is the characteristic function of \(V_\lambda(o_{F,v})^n \) and \(\phi_v \) is the characteristic function of \(o_{F,v}^n \).
5. The volume of the hyperspecial subgroup \(K_{A_v} \) is 1 under the chosen measure on \(A(F_v) \), where \(A = H, H_\lambda, G \).

We may assume that \(\tilde{\Theta}_{\psi^{-1}}(\pi) \neq 0 \). If this is not the case, it follows from the computation below that both sides of Conjecture 2.3.1(3) vanish. Applying Lemma 7.2.1, Conjecture 6.3.1...
and the Rallis inner product formula (for theta lifting from \tilde{G} to H), we get

\begin{equation}
|\mathcal{F}J_{\psi}(\varphi, \Theta_{\psi}(f, \Phi_{\lambda}), \phi)|^2 = \frac{2^{\gamma - 1} \Delta^S_H}{|S_{\Theta_{\psi - 1}}(\pi)| S_{\sigma}} \frac{L^S(1, \Theta_{\psi - 1}(\pi), \sigma)}{L^S(1, \Theta_{\psi - 1}(\pi), \Ad)L^S(1, \sigma, \Ad)} \prod_{i=1}^{n} \zeta_F(2i) \prod_{v \in S'} \int_{H_\sigma(F_v) \cap G(F_v)} B(\sigma_v(h)f_v, f_v) B(\Omega_{\psi_v}(g, h) \Phi_{\lambda, v}, \Phi_{\lambda, v}) B(\pi_v(g) \varphi_v, \varphi_v) B(\omega_{\psi_{\lambda, v}}(g) \phi_v, \phi_v) \, dg \, dh,
\end{equation}

where γ is described as in Conjecture 6.3.1. We explain the use the Rallis inner product formula here in detail. In the remaining part of this paper, we are going to apply the same sort of argument several times. We will simply say that we apply the Rallis inner product for the rest of the paper.

First by Lemma 7.2.1, we have

\begin{equation}
|\mathcal{F}J_{\psi}(\varphi, \Theta_{\psi}(f, \Phi_{\lambda}), \phi)|^2 = \mathcal{I}(f, \widetilde{\Theta}_{\psi - 1}(\varphi, \Phi_{\lambda} \otimes \phi)),
\end{equation}

where \mathcal{I} is defined in Section 6.3. Apply Conjecture 6.3.1 (in the form (6.3.4)), we have

\begin{equation}
\mathcal{I} = \frac{2^\gamma \Delta_H}{|S_{\Theta_{\psi - 1}}(\pi)| S_{\sigma}} \frac{L(1, \widetilde{\Theta}_{\psi - 1}(\pi) \otimes \sigma)}{L(1, \Theta_{\psi - 1}(\pi), \Ad)L(1, \sigma, \Ad) \prod_{v} \mathcal{T}^2_v}.
\end{equation}

Note that here the local linear form \mathcal{T}^2_v is defined using an inner product \mathcal{B}_v on $\widetilde{\Theta}_{\psi - 1}(\pi)_v$ so that $\prod_{v} \mathcal{B}_v$ equals the Petersson inner product on $\widetilde{\Theta}_{\psi - 1}(\pi)$ (defined using the Tamagawa measure on $H(\mathbb{A}_F)$). We view the Rallis inner product as another decomposition of the Petersson inner product on $\widetilde{\Theta}_{\psi - 1}(\pi)$. The integral

\begin{equation}
\int_{G(F_v)} B(\tilde{\Omega}_{\psi_v}(g, 1) \Phi_v, \Phi'_v) B(\pi_v(g) \varphi_v, \varphi'_v) \, dg,
\end{equation}

where we have used B to denote inner products on $\tilde{\Omega}_{\psi_v}$ and on π_v by abuse of notation, defines a linear form on

\begin{equation}
\tilde{\Omega}_{\psi_v} \otimes \pi_v \otimes \tilde{\Omega}_{\psi_v} \otimes \pi_v
\end{equation}

which descends to an inner product on $\widetilde{\Theta}_{\psi - 1, v}(\pi_v)$ which we denote by \mathcal{B}'_v. Put

\begin{equation}
\mathcal{B}'_v = \mathcal{B}'_v \left(\frac{L_{\psi_{\lambda, v}}(\frac{1}{2}, \pi_v \times \chi_{V, v})}{\prod_{i=1}^{n} \zeta_F(2i)} \right)^{-1}.
\end{equation}

Then in this case, the Rallis inner product formula claims that

\begin{equation}
\frac{1}{2} \frac{L_{\psi - 1}(\frac{1}{2}, \pi \times \chi_{V})}{\prod_{i=1}^{n} \zeta_F(2i)} \prod_v \mathcal{B}'_v.
\end{equation}
equals the Petersson inner product on $\tilde{\Theta}_{\psi^{-1}}(\pi)$. Let T'_v be the linear form defined in the same way as T_v but using the inner product B'_v. Define
\[
T'_v = T'_v - \left(\Delta_H \frac{L\left(\frac{1}{2}, \tilde{\Theta}_{\psi^{-1}}(\pi_v) \times \sigma_v \right)}{L(1, \tilde{\Theta}_{\psi^{-1}}(\pi_v), Ad) L(1, \sigma_v, Ad)} \frac{L_{\psi^{-1}}\left(\frac{1}{2}, \pi_v \times \chi V_v \right)}{\prod_{i=1}^{n} \zeta_{F_v}(2i)} \right)^{-1}.
\]
It follows that we have a decomposition
\[
I = \frac{2^{\gamma-1} \Delta_H}{|S_{\tilde{\Theta}_{\psi^{-1}}(\pi)}||S_{\sigma}|} \frac{L\left(\frac{1}{2}, \tilde{\Theta}_{\psi^{-1}}(\pi) \times \sigma \right)}{L(1, \tilde{\Theta}_{\psi^{-1}}(\pi), Ad) L(1, \sigma, Ad)} \frac{L_{\psi^{-1}}\left(\frac{1}{2}, \pi \times \chi V \right)}{\prod_{i=1}^{n} \zeta_{F}(2i)} \prod_v T'_v.
\]
This is an identity of elements in
\[
\text{Hom}_{\tilde{G}(\mathbb{A}_F) \times H_{\lambda}(\mathbb{A}_F)}(\tilde{\Omega}_{\psi} \otimes \pi \otimes \bar{\sigma}, \mathbb{C}) \otimes \text{Hom}_{\tilde{G}(\mathbb{A}_F) \times H_{\lambda}(\mathbb{A}_F)}(\Omega_{\psi} \otimes \pi \otimes \bar{\sigma}, \mathbb{C}),
\]
which descends to an identity of elements in
\[
\text{Hom}_{H_{\lambda}(\mathbb{A}_F)}(\tilde{\Theta}_{\psi^{-1}}(\pi) \otimes \bar{\sigma}, \mathbb{C}) \otimes \text{Hom}_{H_{\lambda}(\mathbb{A}_F)}(\tilde{\Theta}_{\psi^{-1}}(\pi) \otimes \bar{\sigma}, \mathbb{C}).
\]
We now compute $I(f, \tilde{\Theta}_{\psi^{-1}}(\varphi, \bar{\Phi}_{\lambda} \otimes \phi))$ using decomposition (7.3.2). Note that
\[
\tilde{\Omega}_{\psi}|_{\tilde{G}(\mathbb{A}_F) \times H_{\lambda}(\mathbb{A}_F)} \simeq \Omega_{\psi} \otimes \omega_{\psi_{\lambda}},
\]
where $\tilde{G}(\mathbb{A}_F)$ acts on both factors on the right hand side and $H_{\lambda}(\mathbb{A}_F)$ acts only on Ω_{ψ}. We also note that if $v \not\in S$, then
\[
T'_{v}(\Phi_{\lambda,v} \otimes \phi_{\psi}, \bar{\varphi}_{v}, f_{V}) = 1.
\]
Then the identity (7.3.1) follows.

We continue the proof of Theorem 7.1.1. The double integral on the right hand side of (7.3.1) is absolutely convergent by Lemma 7.2.2. Thus we can change the order of integration by integrating over $g \in G(F_v)$ first. Then we apply Rallis inner product formula (for theta lifting from H_{λ} to G), and get
\[
|\mathcal{F} \mathcal{J}_{\psi_{\lambda}}(\varphi, \xi, \phi)|^2 = \frac{2^{\gamma-1} \Delta_H^S}{|S_{\tilde{\Theta}_{\psi^{-1}}(\pi)}||S_{\sigma}|} \frac{L^S\left(\frac{1}{2}, \tilde{\Theta}_{\psi^{-1}}(\pi) \times \sigma \right)}{L^S(1, \tilde{\Theta}_{\psi^{-1}}(\pi), Ad) L^S(1, \sigma, Ad)} \left(\frac{L^S(1, \sigma)}{\prod_{i=1}^{n} \zeta_{F}^S(2i)} \right)^{-1}
\]
\[
\frac{L^S_{\psi^{-1}}\left(\frac{1}{2}, \pi \times \chi V \right)}{\prod_{i=1}^{n} \zeta_{F}^S(2i)} \prod_{v \in S} \int_{H_{\lambda}(F_v)} B(\Theta_{\psi_{\lambda}}(\sigma_v)(g) \xi_v, \xi_v) B(\pi_v(g) \varphi_v, \varphi_v) \overline{B(\omega_{\psi_{\lambda}}(g) \phi_v, \phi_v)} dg,
\]
where $\Theta_{\psi}(f, \Phi_{\lambda}) = \xi = \otimes \xi_v \in \Theta_{\psi}(\sigma)$. Here we fixed a surjective map $\vartheta_v : \mathbb{A}_v \otimes \Omega_{\psi_v} \to \Theta_{\psi_v}(\sigma_v)$ for each v and put $\vartheta_v(f_v, \Phi_{\lambda,v}) = \xi_v$, so that $\xi = \otimes \xi_v$ holds. By Lemma 5.2.3, $|S_{\tilde{\Theta}_{\psi^{-1}}(\pi)}||S_{\sigma}| = 2^{\gamma-1}|S_{\pi}||S_{\Theta_{\psi}(\pi)}|$. Theorem 7.1.1 then follows from Lemma 5.2.2.
7.4. Some remarks. We end this section by some remarks on Theorem 7.1.1.

Remark 7.4.1. We have proved in the theorem that we can deduce Conjecture 2.3.1(3) from Conjecture 6.3.1 under the assumptions of the theorem. Similarly, we may also deduce Conjecture 6.3.1 from Conjecture 2.3.1(3). We only need to run the above argument backwards.

Remark 7.4.2. Instead of the seesaw diagram that has been used in the proof of Theorem 7.1.1, we may consider the following seesaw diagram.

\[
\begin{array}{c}
\text{Mp}(2n) \times \text{Mp}(2n) & \quad \text{O}(2n + 2) \\
\text{Sp}(2n) & \text{O}(2n + 1) \times \text{O}(1)
\end{array}
\]

Then we can go back and forth between Conjecture 2.3.1(3) for \(\text{Sp}(2n) \times \text{Mp}(2n)\) and Ichino–Ikeda’s conjecture for \(\text{SO}(2n + 2) \times \text{SO}(2n + 1)\).

In particular, if \(n = 1\), then the Ichino–Ikeda’s conjecture, hence Conjecture 6.3.1 is known. In this case, without assuming Hypothesis LLC, GLC and O, [39, Theorem 4.5] proved Conjecture 2.3.1(3) with \(|S_{\pi_2}| |S_{\pi_0}| \) replaced by \(\frac{1}{4}\). This result is compatible with our conjecture if we assume LLC, GLC and O.

Remark 7.4.3. Instead of the seesaw diagrams above, we may consider

\[
\begin{array}{c}
\text{Mp}(2n) \times \text{Sp}(2n) & \quad \text{O}(2n + 2r + 1) \\
\text{Mp}(2n) & \text{O}(2n + 2r) \times \text{O}(1) \\
\text{Sp}(2n) & \text{O}(2n + 2r - 1) \times \text{O}(1)
\end{array}
\]

In this way, the Conjecture 2.3.1(3) for tempered representations on \(\text{Sp}(2n) \times \text{Mp}(2n)\) will be related to the Ichino–Ikeda’s conjecture for nontempered representations. Ichino [22] and Ichino–Ikeda [23] made use of the following seesaw diagrams respectively.

\[
\begin{array}{c}
\text{SL}(2) \times \tilde{\text{SL}}(2) & \quad \text{O}(5) \\
\tilde{\text{SL}}(2) & \text{O}(4) \times \text{O}(1) \\
\text{SL}(2) & \text{O}(5) \times \text{O}(1)
\end{array}
\]

At this moment, there is no precise form of the refined Gan–Gross–Prasad conjecture for nontempered representations. We hope that Conjecture 2.3.1(3) together with the seesaw diagrams as above could shed some light on the formulation of this conjecture.
8. Compactibility with Ichino–Ikeda’s conjecture: \(\text{Sp}(2n+2) \times \text{Mp}(2n) \)

8.1. The theorem. The goal of this section is to study Conjecture 2.3.1(3) for \(\text{Sp}(2n+2) \times \text{Mp}(2n) \).

Let \(W \) be an \(2n + 2 \) dimensional symplectic space and \(G = \text{Sp}(W) \). We choose a basis \(\{ e_1, \ldots, e_{n+1}, e_1^*, \ldots, e_{n+1}^* \} \) of \(W \) so that symplectic form on \(W \) is given by the matrix

\[
\begin{pmatrix}
1_n & \cdot \\
-1_n & \cdot
\end{pmatrix}.
\]

Let \(X = \langle e_{n+1} \rangle \), \(X^* = \langle e_{n+1}^* \rangle \) and \(W_0 = \langle e_1, \ldots, e_n, e_1^*, \ldots, e_n^* \rangle \). With this choice of basis, we identify \(W \) with \(F^{2n+2} \) and \(W_0 \) with \(F^{2n} \). Let \(L = \langle e_1, \ldots, e_n \rangle \simeq F^n \) and \(L^* = \langle e_1^*, \ldots, e_n^* \rangle \simeq F^n \). Then \(W_0 = L + L^* \) is a complete polarization of \(W_0 \). We represent elements in \(G \) as matrices.

Let \(R = R(W_0) = NG_0 \) be the Jacobi group associated to \(W_0 \), where \(N \) is the unipotent radical and \(G_0 \simeq \text{Sp}(W_0) \). The group \(R \) takes the form

\[
\begin{pmatrix}
1_n & \cdot \\
\cdot & 1_n
\end{pmatrix} \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \begin{pmatrix}
x & y & \kappa \\
1 & 1 & 1
\end{pmatrix},
\]

where \(x, y \in F^n, \kappa \in F \) and \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_0 \). We write the first matrix as \(n = (x, y, \kappa) \). Let \(\widetilde{G}_0 = \text{Mp}(W_0) \) and \(\widetilde{R} = R\widetilde{G}_0 \).

Let \((V, q_V) \) be a \(2n + 2 \) dimensional orthogonal space and \(H = \text{O}(V) \). Let \(\lambda \in F^x \) and \(v_\lambda^0 \in V \) such that \(q_V(v_\lambda^0, v_\lambda^0) = \lambda \). Let \(V_\lambda \) be the orthogonal complement of \(\langle v_\lambda^0 \rangle \) and \(H_\lambda = \text{O}(V_\lambda) \).

Let \(\omega_\psi \), be the Weil representation of \(\widetilde{R}(\mathbb{A}_F) \) which is realized on \(S(\mathbb{A}_F) \). Let \(\Omega_\psi \) be the Weil representation of \(G(\mathbb{A}_F) \times H(\mathbb{A}_F) \) which is realized on \(S(\mathbb{A}_F)^{n+1} \). Let \(\Omega_0^0 \) be the Weil representation of \(G_0(\mathbb{A}_F) \times H(\mathbb{A}_F) \) which is realized on \(S(\mathbb{A}_F)^n \). Then we have the theta series on \(\widetilde{R}(\mathbb{A}_F) \) (resp. \(\theta_{\psi,\chi}(r, \phi) \), resp. \(\Theta_{\psi}(g, h, \Phi) \), resp. \(\tilde{\Theta}_{\psi}(\tilde{g}, h_\lambda, \tilde{\Phi}) \).

Let \(\pi \) be an irreducible cuspidal tempered automorphic representation of \(H(\mathbb{A}_F) \). We denote by \(\Theta_{\psi}(\pi) \) the global theta lifting of \(\pi \) to \(G(\mathbb{A}_F) \), i.e. the automorphic representation of \(G(\mathbb{A}_F) \) generated by the functions of the form

\[
\Theta_{\psi}(f, \Phi)(\cdot) = \int_{H(F) \backslash H(\mathbb{A}_F)} f(h) \Theta_{\psi}(\cdot, h, \Phi) dh, \quad f \in \pi, \ Phi \in S(\mathbb{A}_F)^{n+1}.
\]
Let σ be an irreducible cuspidal tempered genuine automorphic representation of $\widetilde{G}_0(\mathbb{A}_F)$ and $\tilde{\Theta}_\psi(\sigma)$ be the theta lifting of σ to $H_\lambda(\mathbb{A}_F)$, i.e. the automorphic representation of $H_\lambda(\mathbb{A}_F)$ generated by the functions of the form

$$\tilde{\Theta}_\psi(\varphi, \tilde{\Phi})(\cdot) = \int_{G_0(F)\backslash G_0(\mathbb{A}_F)} \overline{\varphi(g)}\tilde{\Theta}_\psi(g, \cdot, \tilde{\Phi})dg.$$

Theorem 8.1.1. Assume that $\Theta_\psi(\pi)$ and $\tilde{\Theta}_\psi(\sigma)$ are both cuspidal. If Conjecture 6.3.1 holds for $(\pi, \tilde{\Theta}_\psi(\sigma))$, then Conjecture 2.3.1(3) holds for $(\Theta_\psi(\pi), \sigma)$ (with the additive character ψ_λ). In particular, if $n = 1$, then Conjecture 2.3.1(3) holds for $(\Theta_\psi(\pi), \sigma)$ (with the additive character ψ_λ).

The proof of this theorem will occupy the following four subsections. The last assertion follows from the fact that Ichino–Ikeda’s conjecture is known for $SO(4) \times SO(3)$. Thus Conjecture 6.3.1 holds for $O(4) \times O(3)$.

Remark 8.1.2. We don’t assume that $\tilde{\Theta}_\psi(\sigma)$ is not zero. In fact, if $\tilde{\Theta}_\psi(\sigma)$ is zero, then it follows from the computation below that both sides of the identity in Conjecture 2.3.1(3) are zero.

Remark 8.1.3. By assumption, there is a $v_\lambda^0 \in V$ such that $q_V(v_\lambda^0, v_\lambda^0) = \lambda$. If follows from the computation below that if such a v_λ^0 does not exist, then both sides of the identity in Conjecture 2.3.1(3) are zero.

8.2. **Measures.** Without saying to the contrary, we always take the Tamagawa measure on the group of adelic points of an algebraic group. Note that $\text{vol} A(F) \backslash A(\mathbb{A}_F) = 1$ where $A = G, G_0, H, H_\lambda$. Note also that $\text{vol} G_0(F) \backslash \widetilde{G}_0(\mathbb{A}_F) = 1$. Suppose that $A = G, G_0, H, H_\lambda$ or \widetilde{G}_0.

We fix a decomposition $dg = \prod_v dv_v$ where dv_v is a measure on $A(F_v)$ so that for almost all places v, $\text{vol} K_v = 1$ where $K_v = A(\mathfrak{o}_{F,v})$ is a hyperspecial maximal compact subgroup of $A(F_v)$.

Lemma 8.2.1. Let $f \in S(V(\mathbb{A}_F))$. Then

$$\int_{\mathbb{A}_F} \left(\int_{V(\mathbb{A}_F)} f(v)\psi(\kappa q_V(v, v))dv \right) \psi(-\lambda \kappa) d\kappa = \int_{H_\lambda(\mathbb{A}_F) \backslash H(\mathbb{A}_F)} f(h^{-1}v_\lambda^0)dh. \tag{8.2.1}$$

Proof. Suppose that V is not a four dimensional split quadratic space. Then the lemma follows from the Siegel–Weil formula for $SL_2 \times H$. Let $E(g, \Phi_f^{(s)})$ be the Eisenstein series on $SL_2(\mathbb{A}_F)$ where $\Phi_f^{(s)} \in \text{Ind}_{B}^{SL_2(\mathbb{A}_F)} \chi_V|.|^s$ is the Siegel–Weil section where B is the standard upper triangular Borel subgroup of SL_2. Then the left hand side of (8.2.1) is the ψ_λ-Fourier coefficient of $E(g, \Phi_f^{(s)})$ at $s = s_0 = n$. The right hand side of (8.2.1) is the ψ_λ-Fourier coefficient of the theta integral

$$\int_{H(F) \backslash H(\mathbb{A}_F)} \theta_\psi(g, h, f)dh,$$
where $\theta_\psi(g, h, f)$ is the theta series on $\text{SL}_2(\mathbb{A}_F) \times H(\mathbb{A}_F)$. The lemma then follows from the (convergent) Siegel–Weil formula

$$E(g, \Phi_f(s))|_{s=s_0} = \int_{H(F) \setminus H(\mathbb{A}_F)} \theta_\psi(g, h, f) dh.$$

Suppose that V is split and $\dim V = 4$. Without loss of generality, we may assume that $\lambda = 1$. Then V is identified with the space of 2×2 matrices over F and the quadratic form is given by the determinant. We may assume $v_1^0 = 1 \in V$. Under this identification, $H_1(\mathbb{A}_F) \setminus H(\mathbb{A}_F)$ is identified with $\text{SL}_2(\mathbb{A}_F)$ and the quotient measure is identified with the Tamagawa measure on $\text{SL}_2(\mathbb{A}_F)$. This is because the volume of $H(F)H_1(\mathbb{A}_F) \setminus H(\mathbb{A}_F)$ equals one.

We write an element in V as $\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$. The left hand side of the desired identity equals

$$\int_{\mathbb{A}_F} \int_{\mathbb{A}_F} f(x_1, x_2, x_3, x_4) \psi(\kappa(x_1 x_4 - x_2 x_3) - \kappa) dx_1 dx_2 dx_3 dx_4 d\kappa.$$

By the Fourier inversion formula, it equals

$$\int_{\mathbb{A}_F^2} \int_{\mathbb{A}_F} f(x_1^0 + ax_3, x_2^0 + ax_4, x_3, x_4) dadx_3 dx_4,$$

where $(x_1^0, x_2^0) \in \mathbb{A}_F^2$ is a fixed vector of norm one and perpendicular to (x_3, x_4) under the usual Euclidean inner product on \mathbb{A}_F^2. The choice of (x_1^0, x_2^0) is not unique, but the above formula does not depend on the choice. The measure $dadx_3 dx_4$ gives a measure on $\text{SL}_2(\mathbb{A}_F)$ which is invariant under the right multiplication of $\text{SL}_2(\mathbb{A}_F)$. It is clear that it gives $\text{SL}_2(F) \setminus \text{SL}_2(\mathbb{A}_F)$ volume one, hence it is the Tamagawa measure on $\text{SL}_2(\mathbb{A}_F)$. The lemma then follows.

8.3. **Global Fourier–Jacobi periods of Theta liftings.** The goal of this subsection is to compute

$$\int_{G_0(F) \setminus G_0(\mathbb{A}_F)} \int_{N(F) \setminus N(\mathbb{A}_F)} \int_{H(F) \setminus H(\mathbb{A}_F)} \overline{f(h)} \Theta_\psi(n g, h, \Phi) \overline{\theta_\psi(ng, \phi)} \varphi(g) dh d\eta dg. \tag{8.3.1}$$

The idea of the computation is putting in the definition of the theta series and unfolding the integrals. The essential step is the identity (8.3.2). In this identity, the summation over rational points in V of norm λ is replaced by the summation over $H_\lambda(F) \setminus H(F)$. This is the key step which enable us to unfold the integrals. We divide the computation in several steps.

Step 1. The goal is to unwinding the definition of the theta functions. Suppose $n = n(x, y, \kappa)$, $\kappa \in F \setminus \mathbb{A}_F$, $x = (x_1, \ldots, x_n) \in (F \setminus \mathbb{A}_F)^n$ and $y = (y_1, \ldots, y_n) \in (F \setminus \mathbb{A}_F)^n$. By definition, we have

$$\theta_\psi(ng, \phi) = \sum_{l_1, \ldots, l_n \in F} \omega_\psi_{\lambda}(g) \phi(l_1 + x_1, \ldots, l_n + x_n) \psi(\lambda y_1(x_1 + 2l_1) + \cdots + \lambda y_n(x_n + 2l_n) + \lambda \kappa).$$
Suppose \(\Phi = \Phi^0 \otimes \Phi_{n+1} \) where \(\Phi^0 \in \mathcal{S}(V(\mathbb{A}_F))^n \) and \(\Phi_{n+1} \in \mathcal{S}(V(\mathbb{A}_F)) \). We have an \(H(\mathbb{A}_F) \times G_0(\mathbb{A}_F) \) equivariant isomorphism
\[
\mathcal{S}(V(\mathbb{A}_F)^{n+1}) \simeq \mathcal{S}(V(\mathbb{A}_F)^n) \otimes \mathcal{S}(V(\mathbb{A}_F)),
\]
where the left hand side is the Weil representation \(\Omega_{\psi} \) restricted to \(H(\mathbb{A}_F) \times G_0(\mathbb{A}_F) \) and this group acts on the first factor via the Weil representation \(\Omega^0_{\psi} \) and on the second factor via projection to \(H(\mathbb{A}_F) \) and multiplication from the left.

Then we have
\[
\Theta(ng, h, \Phi) = \sum_{v_1, \ldots, v_n, v_{n+1} \in V} \Omega^0_{\psi}(g) \Phi^0(h^{-1}(v_1 + x_1 v_{n+1}), \ldots, h^{-1}(v_n + x_n v_{n+1})) \Phi_{n+1}(h^{-1}v_{n+1}) \\
\psi(2y_1 q v(v_1, v_{n+1}) + \cdots + 2y_n q v(v_n, v_{n+1}) + (\kappa + y^t x) q v(v_{n+1}, v_{n+1})).
\]

Therefore
\[
\int_{F \backslash \mathbb{A}_F} \Theta(ng, h, \Phi) d\psi_{\lambda}(\kappa) = \sum_{v_1, \ldots, v_n \in V \atop q v(v_{n+1}, v_{n+1}) = \lambda} \Omega^0_{\psi}(g) \Phi^0(h^{-1}(v_1 + x_1 v_{n+1}), \ldots, h^{-1}(v_n + x_n v_{n+1})) \\
\Phi_{n+1}(h^{-1}v_{n+1}) \psi(2y_1 q v(v_1, v_{n+1}) + \cdots + 2y_n q v(v_n, v_{n+1}) + y^t x \lambda)).
\]

From this we get
\[
\int_{N(\mathbb{F}) \backslash N(\mathbb{A}_F)} \Theta(ng, h, \Phi)d\psi_{\lambda}(\kappa) = \sum_{v_1, \ldots, v_n \in V \atop q v(v_{n+1}, v_{n+1}) = \lambda} \Omega^0_{\psi}(g) \Phi^0(h^{-1}(v_1 + x_1 v_{n+1}), \ldots, h^{-1}(v_n + x_n v_{n+1})) \\
\Phi_{n+1}(h^{-1}v_{n+1}) \psi(2y_1 q v(v_1, v_{n+1}) - l_1 \lambda) + \cdots + 2y_n (q v(v_n, v_{n+1}) - l_n \lambda)) dxdy.
\]

Recall that if \(g \in G_0 \), then we define \(\iota(g) = (g, 1) \in \tilde{G}_0 \).

Step 2. This is the key step. We replace the summation over rational points in \(V \) of norm \(\lambda \) by the summation over \(H(\lambda(\mathbb{F})) \backslash H(\mathbb{F}) \).

Let \(\Lambda_\lambda = \{ v \in V \mid q v(v, v) = \lambda \} \). Then the group \(H(\mathbb{F}) \) acts transitively on \(\Lambda_\lambda(\mathbb{F}) \) and identifies \(H(\lambda(\mathbb{F})) \backslash H(\mathbb{F}) \) with \(\Lambda_\lambda(\mathbb{F}) \) by \(h \mapsto h^{-1}v_0^\lambda \). It follows that
\[
(8.3.1) = \sum_{v_1, \ldots, v_n \in V \atop l_1, \ldots, l_n \in F} \int_{F \backslash \mathbb{A}_F} \int_{G_0(\mathbb{F}) \backslash G_0(\mathbb{A}_F)} \int_{H(\lambda(\mathbb{F})) \backslash H(\mathbb{A}_F)} f(h) \Omega^0_{\psi}(g) \Phi^0(h^{-1}(v_1 + x_1 v_0^\lambda), \ldots, h^{-1}(v_n + x_n v_0^\lambda)) \Phi_{n+1}(h^{-1}v_0^\lambda) \\
\omega_{\psi_\lambda}(\iota(g)) \psi(2y_1 q v(v_1, v^\lambda_0) - l_1 \lambda) + \cdots + 2y_n (q v(v_n, v^\lambda_0) - l_n \lambda)) \varphi(g) dh dg dx dy.
\]

60
Step 3. Simplifying the expression. This step is mostly formal. Integrations over y_i’s yield

\[
(8.3.1) = \sum_{\substack{v_1, \ldots, v_n \in V \\
l_1, \ldots, l_n \in F}} \int_{(F \setminus \mathbb{A}_F)^n} \int_{G_0(F) \setminus G_0(\mathbb{A}_F)} \int_{H(\mathbb{A}_F) \setminus H(\mathbb{A}_F)} \int_{H(\mathbb{A}_F) \setminus H(\mathbb{A}_F)} f(h \lambda h) \Omega_{\psi}(g) \Phi^0(h^{-1}h_{\lambda}^{-1}v_1 + x_1 h^{-1}v_0^0, \ldots, h^{-1}h_{\lambda}^{-1}v_n + x_n h^{-1}v_0^0) \Phi_{n+1}(h^{-1}v_0^0) \omega_{\psi}(g) \phi(l_1 + x_1, \ldots, l_n + x_n) \\
\phi(2y_1(q_{v^0}(v_1, v_0^0) - l_1) + \cdots + 2y_n(q_{v^0}(v_n, v_0^0) - l_n) \lambda)) \varphi(g) dh \lambda dh d\lambda dx dy.
\]

The variables v_i have to be of the form $l_i v_0^0 + w_i$ where $w_i \in V_{\lambda}$. Therefore

\[
(8.3.1) = \sum_{\substack{w_1, \ldots, w_n \in V_{\lambda} \\
l_1, \ldots, l_n \in F}} \int_{(F \setminus \mathbb{A}_F)^n} \int_{G_0(F) \setminus G_0(\mathbb{A}_F)} \int_{H(\mathbb{A}_F) \setminus H(\mathbb{A}_F)} \int_{H(\mathbb{A}_F) \setminus H(\mathbb{A}_F)} f(h \lambda h) \Omega_{\psi}(g) \Phi^0(h^{-1}h_{\lambda}^{-1}w_1 + (l_1 + x_1) h^{-1}v_0^0, \ldots, h^{-1}h_{\lambda}^{-1}w_n + (l_n + x_n) h^{-1}v_0^0) \\
\Phi_{n+1}(h^{-1}v_0^0) \omega_{\psi}(g) \phi(l_1 + x_1, \ldots, l_n + x_n) \varphi(g) dh \lambda dh d\lambda dx dy.
\]

Thus

\[
(8.3.1) = \sum_{\substack{w_1, \ldots, w_n \in V_{\lambda} \\
l_1, \ldots, l_n \in F}} \int_{H_{\lambda}(F) \setminus H(\mathbb{A}_F)} \int_{G_0(F) \setminus G_0(\mathbb{A}_F)} \int_{H(\mathbb{A}_F) \setminus H(\mathbb{A}_F)} \int_{H(\mathbb{A}_F) \setminus H(\mathbb{A}_F)} f(h \lambda h) \\
\Omega_{\psi}(g) \Phi^0(h^{-1}h_{\lambda}^{-1}w_1 + x_1 h^{-1}v_0^0, \ldots, h^{-1}h_{\lambda}^{-1}w_n + x_n h^{-1}v_0^0) \\
\Phi_{n+1}(h^{-1}v_0^0) \omega_{\psi}(g) \phi(x_1, \ldots, x_n) \varphi(g) dh \lambda dh d\lambda dx dy.
\]

We define

\[
(8.3.3) \Phi^0 * \tilde{\phi}(w_1, \ldots, w_n) = \int_{H_{\lambda}(F) \setminus H(\mathbb{A}_F)} \Phi^0(w_1 + x_1 v_0^0, \ldots, w_n + x_n v_0^0) \phi(x_1, \ldots, x_n) dx_1 \cdots dx_n.
\]

Then $\Phi^0 * \tilde{\phi} \in S(V_{\lambda}(\mathbb{A}_F)^n)$.

It is straightforward to check that

\[
\tilde{\Omega}_{\psi}(g, h_{\lambda})(\Phi^0 * \tilde{\phi}) = (\Omega^0_{\psi}(g, h_{\lambda}) \Phi^0) * (\omega_{\psi}(g) \phi), \quad \tilde{g} \in \mathcal{G}_0(\mathbb{A}_F), \ h_{\lambda} \in H(\mathbb{A}_F),
\]

where g is the image of \tilde{g} in $G_0(\mathbb{A}_F)$. With this definition, we have

\[
(8.3.1) = \int_{H_{\lambda}(F) \setminus H(\mathbb{A}_F)} \int_{H_{\lambda}(F) \setminus H(\mathbb{A}_F)} f(h \lambda h) \tilde{\Omega}_{\psi}(\tilde{g}, (\Omega^0_{\psi}(h) \Phi^0) * \tilde{\phi})(h_{\lambda}) dh \lambda \Phi_{n+1}(h^{-1}v_0^0) dh.
\]

We summarize the above computation in the following lemma.
Lemma 8.3.1.

\[
\int_{G_0(F)\backslash G_0(\mathbb{A}_F)} \int_{N(F)\backslash N(\mathbb{A}_F)} \int_{H(F)\backslash H(\mathbb{A}_F)} \overline{f(h)} \Theta_\psi(ng, h, \Phi^0 \otimes \Phi_{n+1}) \varphi(g) \, dh \, dn \, dg = \int_{H_\lambda(\mathbb{A}_F) \backslash H(\mathbb{A}_F)} \left(\int_{H_\lambda(F) \backslash H_\lambda(\mathbb{A}_F)} \overline{f(h)} \tilde{\Theta}_\psi(\gamma, \Omega_\psi(ng, h) \Phi^0) * \phi(h) \, dh \right) \Phi_{n+1}(h^{-1} v_0^0) \, dh.
\]

8.4. Local Fourier–Jacobi periods of theta liftings. We now switch to the local situation. We fix a place \(v \) of \(F \) and suppress it from all notation. So \(F \) stands for a local field of characteristic zero. We have the local version of all the previous objects, e.g. Weil representations, the representations \(\pi, \sigma \), and the theta liftings \(\Theta_\psi(\pi), \tilde{\Theta}_\psi(\sigma) \), the orbit \(\Lambda_\lambda \) of \(v_0^0 \) under the action of \(H(F) \), which is identified with \(H_\lambda(F) \backslash H(F) \), etc. We denote by \(\mathcal{B} \) the inner products on various unitary representations.

The goal is to compute

(8.4.1) \[
\int_{G_0(F)} \int_{N(F)} \int_{H(F)} \mathcal{B}(\pi(h)f, f) \mathcal{B}(\Omega_\psi(ng, h) \Phi, \Phi) \mathcal{B}(\omega_\psi(ng, \phi) \Phi, \Phi) \mathcal{B}(\sigma(g) \varphi, \varphi) \, dh \, dn \, dg,
\]

where \(\Phi = \Phi^0 \otimes \Phi_{n+1} \) where \(\Phi^0 \in \mathcal{S}(V^n) \) and \(\Phi_{n+1} \in \mathcal{S}(V) \).

The computation is parallel to the global computation as given in the previous subsection. The idea is again to unwind the definition of the Weil representations. The unfolding argument in the global situation is replaced by several integration formulas in the local case. The computation, however, is messy and technical. We list the main steps.

(1) Showing that the integral (8.4.1) is absolutely convergent. Thus we may change the order of integration.

(2) Computation of the integral over \(N(F) \), namely,

\[
\int_{N(F)} \mathcal{B}(\Omega_\psi(ng, h) \Phi, \Phi) \mathcal{B}(\omega_\psi(ng, \phi) \Phi, \Phi) \, dn
\]

for \(g \in G_0(F) \) and \(h \in H(F) \). The goal is to unwinding the definition of the Weil representations and show that this integral equals (8.4.6). The key point in this step is the integral formula Lemma 8.4.3.

(3) Simplifying the results from the previous step. Here we make use of the integration formula Lemma 8.4.4 which is a variant of the fact that Fourier transform preserves \(L^2 \) norm of Schwartz functions. The final outcome is a clean expression (8.4.7) of the integral over \(N(F) \).

(4) Computing (8.4.1) using (8.4.7). The final result is summarized in Lemma 8.4.5. This steps requires no more than making change of variables.

We organize the following computation in the above described steps.

Step 1. Absolute convergence.
Lemma 8.4.1. The integral (8.4.1) is absolutely convergent.

Proof. In view of Proposition 2.2.1 (the case \(r = 1 \)), we only need to prove that for some \(A > 0 \), we have

\[
\int_{H(F)} \Xi(h)|\mathcal{B}^\ast(g, h, \Phi, \Phi)|dh \ll \Xi(g)(1 + \varsigma(g))^A, \quad g \in G(F).
\]

Note that

\[
\left| \int_{H(F)} \Xi(h)|\mathcal{B}^\ast(g, h, \Phi, \Phi)|dh \right| \ll \Xi(g)(1 + \varsigma(g))^A, \quad g \in G(F),
\]

since the left hand side is a matrix coefficient of a tempered representation.

Even though in general \(|\mathcal{B}^\ast(g, h, \Phi, \Phi)| \) is not a matrix coefficient of the Weil representation, we claim that it is dominated by a matrix coefficient of the Weil representation. In fact, by the Cartan decomposition, we only need to prove this when \(g = a \in A_G^+ \) and \(h = b \in A_H^+ \). Then

\[
|\mathcal{B}^\ast(g, h, \Phi, \Phi)| \leq \int_{V(F)^{n+1}} |\Phi(b^{-1}va)\Phi(v)|dv.
\]

We may find a Schwartz function \(\Phi^+ \) so that \(|\Phi| \leq \Phi^+ \) (pointwise). We have proved the claim and hence the lemma.

\[\square\]

Step 2. Computing the integral over \(N(F) \).

We recall the following well-known lemma.

Lemma 8.4.2 ([36, Lemma 3.18]). There is a unique measure \(dh \) on \(H_\lambda(F) \backslash H(F) \), such that for any \(f \in S(V) \), we have

\[
\int_V f(v)dv = \int_{F^\times} \int_{H_\lambda(F) \backslash H(F)} f(h^{-1}v_\lambda^0)dh d\lambda,
\]

where \(dv \) is the self-dual measure on \(V \) and \(d\lambda \) is the self-dual measure on \(F \).

For the rest of this section, when we use the notation \(d \) to denote a measure on \(H_\lambda(F) \backslash H(F) \), we always mean the measure defined in this lemma.

We need the following integration formula.

Lemma 8.4.3. Let \(f \in S(V) \). Then \(\int_V f(v)\psi(\kappa q_v(v, v))dv \) is absolutely integrable as a function of \(\kappa \). Moreover,

\[
\int_F \left(\int_V f(v)\psi(\kappa q_v(v, v))dv \right) \psi(-\lambda \kappa) d\kappa = \int_{H_\lambda(F) \backslash H(F)} f(h^{-1}v_\lambda^0)dh.
\]

Proof. The integral \(\int_V f(v)\psi(\kappa q_v(v, v))dv \) equals

\[
\Phi_f^n \left(\begin{pmatrix} 1 & \kappa \\ -1 & 1 \end{pmatrix} \right),
\]

63
where Φ^0_f is the Siegel–Weil section of $\operatorname{Ind}^{\text{SL}_2(F)} \chi_V\cdot |^s$ at $s = s_0 = n$. Then by the decomposition
\[
\begin{pmatrix} -1 & 1 \\ 1 & \kappa \end{pmatrix} \begin{pmatrix} 1 & \kappa \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -\kappa^{-1} & 1 \\ \kappa^{-1} & 1 \end{pmatrix},
\]
the order of magnitude of $\int_V f(v)\psi(\kappa q_V(v, v)) dv$ is $|\kappa|^{-n-1}$ when $|\kappa|$ is large. The integrability then follows.

By Lemma 8.4.2,
\[
\int_V f(v)\psi(\kappa q_V(v, v)) dv = \int_{F^\times} \left(\int_{H_{\lambda}(F) \backslash H(F)} f(h^{-1}v^0_\lambda) d\lambda \right) \psi(-\lambda' \kappa) d\lambda'.
\]
Since f is Schwartz, $\int_{H_{\lambda}(F) \backslash H(F)} f(h^{-1}v^0_\lambda) d\lambda$ is integrable as a function of λ' and is continuous on F^\times. The lemma then follows from the Fourier inversion formula. \hfill \Box

Thanks to Lemma 8.4.1, we may change the order of integrations in (8.4.1). We integrate over $N(F)$ first. By definition,
\[
\mathcal{B}(\Omega_\psi(ng, h) \Phi, \Phi) = \int_{V^{n+1}} \Omega^0_\psi(g) \Phi^0(h^{-1}(v_1 + x_1v_{n+1}), \ldots, h^{-1}(v_n + x_nv_{n+1})) \Phi^0(v_1, \ldots, v_n)
\]
\[
\times \psi(2y_1q_V(v_1, v_{n+1}) + \cdots 2y_nq_V(v_n, v_{n+1}) + (\kappa + y^t x) q_V(v_{n+1}, v_{n+1})))
\]
\[
\Phi_{n+1}(h^{-1}v_{n+1}) \Phi_{n+1}(v_{n+1}) dv_1 \cdots dv_{n+1}.
\]
Here $n = n(x, y, \kappa)$ and $x = (x_1, \ldots, x_n) \in F^n$, $y = (y_1, \ldots, y_n) \in F^n$, $\kappa \in F$. It follows from Lemma 8.4.3 that
\[
(8.4.4)
\]
\[
\int_F \int_{V^{n+1}} \Omega_\psi(ng, h) \Phi(v_1, \ldots, v_n, v_{n+1}) \Phi^0(v_1, \ldots, v_n, v_{n+1}) \psi(-\lambda \kappa) dv_1 \cdots dv_n dv_{n+1} d\kappa
\]
\[
= \int_{H_{\lambda}(F) \backslash H(F)} \int_{V^n} \Omega^0_\psi(g) \Phi^0(h^{-1}(v_1 + x_1h^{-1}v^0_{\kappa}), \ldots, h^{-1}(v_n + x_nh^{-1}v^0_{\kappa})) \Phi^0(v_1, \ldots, v_n)
\]
\[
\times \psi(2y_1q_V(v_1, h^{-1}v^0_{\lambda}) + \cdots 2y_nq_V(v_n, h^{-1}v^0_{\lambda}) + (x_1y_1 + \cdots x_ny_n) \lambda)
\]
\[
\Phi_{n+1}(h^{-1}h^{-1}v^0_{\lambda}) \Phi_{n+1}(h^{-1}v^0_{\lambda}) dv_1 \cdots dv_n dh'.
\]
The integral on the right hand side is absolutely convergent. In fact, the integrand is bounded by
\[
C|\Phi^0(v_1, \ldots, v_n)\Phi_{n+1}(h^{-1}v^0_{\lambda})|,
\]
where C is a constant which is independent of x and y.

By definition,
\[
\mathcal{B}(\omega_{\lambda}(n(x, y, 0)\overline{g}) \phi, \phi)
\]
\[
= \int_{F^n} \omega_{\lambda}(\overline{g}) \phi(l_1 + x_1, \ldots, l_n + x_n) \overline{\phi(l_1, \ldots, l_n)} \psi(\lambda y_1(x_1 + 2l_1) + \cdots + \lambda y_n(x_n + 2l_n)) dl_1 \cdots dl_n,
\]
where $\overline{g} \in \mathcal{G}_0$.

64
We claim that

\begin{equation}
\int_{F_2^n} \int_{H_\lambda(F) \setminus H(F)} \int_{V^n} |\ast||B(\omega_{\psi, \lambda}(n(x, y, 0)\bar{g})\phi, \phi)| \, dv_1 \cdots dv_n \, dh' \, dx \, dy
\end{equation}

is convergent, where \ast stands for the integrand of the right hand side of (8.4.4). Indeed, this integral is bounded by the convergent integral

\begin{align*}
& C \times \int_{H_\lambda(F) \setminus H(F)} \int_{F_2^n} \int_{V^n} |\Phi(v_1, \cdots, v_n, v_{n+1})\Phi_{n+1}(h'^{-1}v_0^{(n)})| \, dv_1 \cdots dv_n \, dh' \\
\times & \int_{F_2^n} |B(\omega_{\lambda}(n(x, y, 0)\bar{g})\phi, \phi)| \, dx \, dy,
\end{align*}

where C is some constant.

Thanks to the convergence of (8.4.5), we can change the order of the integration of $x, y \in F^n$ and $h' \in H_\lambda(F) \setminus H(F)$. We end up with

\begin{align*}
& \int_{N(F)} B(\Omega_\psi(n g, h)\Phi, \Phi) \overline{B(\omega_{\psi, \lambda}(n(g))\phi, \phi)} \, dn \\
& \text{(8.4.6)}
\end{align*}

which equals the following integral:

\begin{align*}
& \int_{H_\lambda(F) \setminus H(F)} \int_{F_2^n} \int_{V^n} \int_{F^n} \Omega_\psi(\phi)(v_1, \cdots, v_n) \\
\times & \psi(2y_1 q V(v_1, h'^{-1}v_0^{(n)}) + \cdots + 2y_n q V(v_n, h'^{-1}v_0^{(n)}) + (x_1 y_1 + \cdots + x_n y_n)\lambda) \\
\times & \frac{\omega_{\psi, \lambda}(n(g))\phi(l_1 + x_1, \cdots, l_n + x_n)\phi(l_1, \cdots, l_n)}{\psi(-\lambda y_1(x_1 + 2l_1) - \cdots - \lambda y_n(x_n + 2l_n))} \\
\times & \Phi_{n+1}(h'^{-1}v_0^{(n)}) \Phi_{n+1}(h'^{-1}v_0^{(n)}) \, dl_1 \cdots dl_n \, dv_1 \cdots dv_n \, dy_1 \cdots dy_n \, dx_1 \cdots dx_n \, dh'.
\end{align*}

Step 3. Simplifying the three inner integrals of (8.4.6).

We need the following integration formula.

Lemma 8.4.4. Let f be a Schwartz function on V^n and ϕ a Schwartz function on F^n. Let $v^0 \in V$ with $q V(v^0, v^0) = \lambda$ and $\{v^0\}^\perp$ be its orthogonal complement. Then

\begin{align*}
& \int_{F^n} \int_{V^n} \int_{F^n} \psi(2y_1 q V(v_1, v^0) + \cdots + 2y_n q V(v_n, v^0) - 2y_1 l_1 \lambda - \cdots - 2y_n l_n \lambda) \\
& \cdot f(v_1, \cdots, v_n) \phi(l_1, \cdots, l_n) \, dl_1 \cdots dl_n \, dv_1 \cdots dv_n \, dy_1 \cdots dy_n.
\end{align*}

equals

\begin{align*}
& |2\lambda|^{-n} \int_{\{v^0\}^\perp} \int_{F^n} (l_1 v^0 + w_1, \cdots, l_n v^0 + w_n) \phi(l_1, \cdots, l_n) \, dl_1 \cdots dl_n \, dw_1 \cdots dw_n.
\end{align*}

Proof. Let \hat{f} and $\hat{\phi}$ be the Fourier transform of f and ϕ respectively (with respect to ψ). Then the first integral in the lemma equals

\begin{align*}
& \int_{F^n} \hat{f}(2y_1 v^0, \cdots, 2y_n v^0) \hat{\phi}(2y_1 \lambda, \cdots, 2y_n \lambda) \, dy_1 \cdots dy_n.
\end{align*}
The lemma then follows from the fact that the Fourier transform preserves the inner product of Schwartz functions.

Applying this lemma, we see that

Inner three integrals of (8.4.6)

\[
|2\lambda|^{-n} \int_{V^n} \int_{F^n} \int_{F^n} \begin{align*}
\Phi^0(g) &\Phi^0(h^{-1}h'^{-1}(w_1 + l_1v_1^0 + x_1v_1^0), \ldots, h^{-1}h'^{-1}(w_n + l_nv_n^0 + x_nv_n^0)) \\
&\Phi^0(w_1 + l_1h'^{-1}v_1^0, \ldots, w_n + l_nh'^{-1}v_n^0) \omega_{\psi}(\nu(g)) \phi(l_1 + x_1, \ldots, l_n + x_n) \phi(l_1, \ldots, l_n) \\
dw_1 \cdots dw_n dl_1 \cdots dl_n dx_1 \cdots dx_n.
\end{align*}
\]

This integral is absolutely convergent. We then make change of variables \(x_i \mapsto x_i - l_i\). Then

\[
|2\lambda|^{-n} \int_{V^n} \int_{F^n} \int_{F^n} \begin{align*}
\Phi^0(h^{-1}(w_1 + l_1v_1^0), \ldots, h^{-1}(w_n + l_nv_n^0)) \\
\omega_{\psi}(\nu(g)) \phi(x_1, \ldots, x_n) \phi(l_1, \ldots, l_n) dl_1 \cdots dl_n dw_1 \cdots dw_n dx_1 \cdots dx_n.
\end{align*}
\]

We define a local analogue of (8.3.3), i.e.

\[
\Phi^0 \ast \bar{\phi}(v_1, \ldots, v_n) = \int_{F^n} \Phi^0(v_1 + x_1v_1^0, \ldots, v_n + x_nv_n^0) \bar{\phi}(x_1, \ldots, x_n) dx_1 \cdots dx_n.
\]

Then \(\Phi^0 \ast \bar{\phi} \in S(V^n)\) and

\[
\tilde{\Omega}_{\psi}(g, h) (\Phi^0 \ast \bar{\phi}) = (\Omega_{\psi}^0(g, h) \Phi^0) \ast (\omega_{\psi}(g) \phi), \quad \tilde{g} \in \tilde{G}_0(F), h \in H_\lambda(F),
\]

where \(g\) is the image of \(\tilde{g}\) in \(G_0(F)\).

We conclude that

\[
(8.4.6) = |2\lambda|^{-n} \int_{H_\lambda(F) \setminus H(F)} \mathcal{B}(\Omega_{\psi}^0(g, h'h') \Phi \ast \omega_{\psi}(g) \phi, \Omega_{\psi}^0(h') \Phi \ast \bar{\phi}) \\
\Phi_{n+1}(h^{-1}h'^{-1}v_1^0) \Phi_{n+1}(h'^{-1}v_1^0) dh'.
\]

Step 4. Computing (8.4.1) using (8.4.7).

Recall that we have fixed a measure on \(H(F)\) and \(H_\lambda(F)\) respectively. Let \(dh'\) be the quotient measure on \(H_\lambda(F) \setminus H(F)\) and \(c\) a constant so that \(c \cdot dh' = \frac{dh'}{dh'}\) where \(dh'\) is the measure on \(H_\lambda(F) \setminus H(F)\) defined in Lemma 8.4.2. Then we get

\[
(8.4.1) = c \cdot |2\lambda|^{-n} \int_{H_\lambda(F)} \int_{H(F)} \int_{G_0} \mathcal{B}(\pi(h)f, \bar{f}) \mathcal{B}(\sigma(g)\varphi, \varphi) \mathcal{B}(\Omega_{\psi}^0(g, h'h') \Phi \ast \omega_{\psi}(g) \phi, \Omega_{\psi}^0(h') \Phi \ast \bar{\phi}) \\
\Phi_{n+1}(h^{-1}h'^{-1}v_1^0) \Phi_{n+1}(h'^{-1}v_1^0) dg dh dh'.
\]
We make a change of variable $h \mapsto h^{-1}h'$ and get

\[(8.4.1)\]

\[= c \cdot |2\lambda|^{-n} \int_{H_\lambda \backslash H \times H} \int_{G_0} \mathcal{B}(\pi(h)f, \pi(h')f) \mathcal{B}(\sigma(g)\varphi, \varphi) \mathcal{B}(\Omega_\psi^0(g, h)\Phi * \overline{\omega_\chi}(g)\phi, \Omega_\psi^0(h')\Phi * \overline{\phi}) \Phi_{n+1}(h^{-1}v_\lambda^0) \Phi_{n+1}(h^{-1}v_\lambda') dhdh'.\]

The group H_λ embeds in $H \times H$ diagonally. This integral is absolutely convergent.

We further split the integration over h as $h_\lambda h$ where $h_\lambda \in H_\lambda$ and $h \in H_\lambda \backslash H$. Then

\[(8.4.1) = c \cdot |2\lambda|^{-n} \int_{H_\lambda \backslash H} \int_{H_\lambda} \int_{G_0} \mathcal{B}(\pi(h_\lambda h)f, \pi(h')f) \mathcal{B}(\sigma(g)\varphi, \varphi) \mathcal{B}(\Omega_\psi^0(g, h_\lambda)\Phi * \overline{\phi}), (\Omega_\psi^0(h')\Phi * \overline{\phi})) \Phi_{n+1}(h^{-1}v_\lambda^0) \Phi_{n+1}(h^{-1}v_\lambda') dhdh'.\]

We summarize the above computation into the following lemma.

Lemma 8.4.5. Suppose $\Phi = \Phi^0 \otimes \Phi_{n+1}$ where $\Phi^0 \in S(V^n)$ and $\Phi_{n+1} \in S(V)$. Then

\[
\int_{G_0(F)} \int_{N(F)} \int_{H(F)} \mathcal{B}(\pi(h)f, f) \mathcal{B}(\Omega_\psi^0(ng, h)\Phi, \Phi) \mathcal{B}(\omega_\chi(ng)\phi, \phi) \mathcal{B}(\sigma(g)\varphi, \varphi) dhdn dg
\]

\[= c \cdot |2\lambda|^{-n} \int_{H_\lambda \backslash H} \int_{H_\lambda} \left(\int_{G_0} \mathcal{B}(\sigma(g)\varphi, \varphi) \mathcal{B}(\Omega_\psi^0(g, h_\lambda)\Phi * \overline{\phi}), (\Omega_\psi^0(h')\Phi * \overline{\phi})) dg \right)
\]

\[
\frac{\mathcal{B}(\pi(h_\lambda h)f, \pi(h')f) \Phi_{n+1}(h^{-1}v_\lambda^0) \Phi_{n+1}(h^{-1}v_\lambda') dhdh'}{\mathcal{B}(\pi(h_\lambda h)f, \pi(h')f) \Phi_{n+1}(h^{-1}v_\lambda^0) \Phi_{n+1}(h^{-1}v_\lambda')} dh\lambda dh'\lambda.
\]

8.5. Proof of Theorem 8.1.1. By Lemma 8.3.1, we have

\[|\mathcal{F} \mathcal{J}_{\psi_\lambda}(\Theta_{\psi_\lambda}(f, \varphi), \varphi, \phi)|^2 = \int \int_{H_\lambda \backslash H(\mathbb{A}_F)} \Phi_{n+1}(h^{-1}v_\lambda^0) \Phi_{n+1}(h^{-1}v_\lambda') \left(\int_{H_\lambda \backslash H(\mathbb{A}_F)} \frac{f(h_\lambda h)\overline{\psi}(\varphi, (\Omega_\psi^0(h)\Phi^0) * \overline{\phi})) dh_\lambda}{\int_{H_\lambda \backslash H(\mathbb{A}_F)} \overline{\psi}(\varphi, (\Omega_\psi^0(h')\Phi^0) * \overline{\phi})) dh_\lambda'} dhdh'\lambda.
\]

We fix a sufficiently large finite set of places S of F so that if $v \notin S$, then the following conditions hold.

1. v is non-archimedean, 2 and λ are in \mathfrak{o}_F^\times, the conductor of ψ is \mathfrak{o}_F^\times.
2. The group A is unramified with a hyperspecial maximal compact subgroup $K_{A_v} = A(\mathfrak{o}_F^\times)$ where $A = G, G_0, H, H_\lambda$.
3. f_v and φ_v are K_{H_v} and K_{G_0} fixed respectively. Moreover, they are normalized so that $\mathcal{B}(f_v, f_v) = \mathcal{B}(\varphi_v, \varphi_v) = 1$. In particular, π_v and σ_v are both unramified.
4. Φ_v is the characteristic function of $V(\mathfrak{o}_F^\times)^{n+1}$, ϕ_v is the characteristic function of \mathfrak{o}_F^\times.
5. The volume of the hyperspecial maximal compact subgroup K_{A_v} is 1 under the chosen measure on $A(F_v)$, where $A = G, G_0, H, H_\lambda$.

67
Lemma 8.5.1. If \(v \not\in S \), then \(c_v = L_v(n + 1, \chi_{V_v})^{-1} \). Recall that \(dh_v = c_v \cdot dh_{\lambda,v} \cdot dh_v \) where \(dh_v \) is the measure defined in Lemma 8.4.2.

Proof. We denote temporarily by \(f_v \) the characteristic function of \(V(\mathfrak{o}_{F,v}) \). Recall from the proof of Lemma 8.4.3 that
\[
\int_{H_\lambda(F_v) \backslash H(F_v)} f_v(h^{-1}v_0^0) dh = \int_{F_v} \Phi_v^n \left(\begin{pmatrix} 1 & \kappa \\ -1 & 1 \end{pmatrix} \right) \psi_v(-\lambda \kappa) d\kappa,
\]
where \(\Phi_v^n \) is the Siegel–Weil section of \(\text{Ind}^\text{SL}_2(F_v) \chi_{V_v} | \cdot |^s \) at \(s = s_0 = n \). It is well-known that the right hand side equals \(L_v(n + 1, \chi_{V_v})^{-1} \).

We note that since \(\lambda \in \mathfrak{o}_{F,v}^\times \), the orbit \(\Lambda_\lambda \) of \(v_0^0 \) is defined over \(\mathfrak{o}_F,v \). The group \(H_\lambda(F_v) \) acts transitively on \(V_\lambda(F_v) \). Therefore \(H_\lambda(F_v) \backslash H(F_v, \mathfrak{o}_{F,v}) \to \Lambda_\lambda(F_v) \) is a bijection. Thus \(f_v(h^{-1}v_0^0) = 1_{H_\lambda(F_v) \backslash H(F_v)}(h) \). Therefore under the quotient measure \(dh_{\lambda,v} \cdot dh_v \), the left hand side equals one. The lemma then follows.

\[\square \]

Lemma 8.5.2.
\[
\prod_{v \in S} c_v = L^S(n + 1, \chi_V).
\]

Proof. It follows from Lemma 8.2.1 that \(\prod_v c_v = 1 \). Then
\[
\prod_{v \in S} c_v = \prod_{v \notin S} c_v^{-1} = L^S(n + 1, \chi_V).
\]

\[\square \]

Conjecture 6.3.1, the Rallis’ inner product formula (for theta lifting from \(\widetilde{G}_0 \) to \(H_\lambda \)) and Lemma 8.4.5 lead to
\[
| \mathcal{F} \mathcal{J}_{\psi}(\Theta_{\psi}(f, \Phi), \varphi, \phi) |^2 = \frac{2^{-1} \cdot \gamma^{-1}}{|S_{\pi}| |S_{\widetilde{\Theta}_\psi(\sigma)}|} \cdot \frac{L^S(1/2, \pi \times \widetilde{\Theta}_\psi(\sigma))}{L^S(1, \pi, \text{Ad}) L^S(1, \widetilde{\Theta}_\psi(\sigma), \text{Ad})}
\]
\[
\Delta_{H(V)}^S \cdot L^S(1/2, \sigma \times \chi_{V_\lambda}) \cdot \prod_{j=1}^n c_S(2j) \cdot \prod_{v \in S} c_v^{-1} \int_{G_0(F_v)} \int_{N(F_v)} \int_{H(F_v)}
\]
\[
\mathcal{B}_v(\pi(h_v) f_v, f_v) \mathcal{B}_v(\Omega_{\psi_v}(h_v, n_v g_v) \Phi_v, \Phi_v) \mathcal{B}_v(\omega_{\psi_v}(h_v, n_v g_v) \phi_v, \phi_v) \mathcal{B}_v(\sigma_v(g_v) \varphi_v, \varphi_v) dh_v d n_v d g_v,
\]
where \(\gamma \) is described as in Conjecture 6.3.1.
We then apply the Rallis inner product formula for the theta lifting from H to G. We conclude that

$$|\mathcal{F}\mathcal{J}_{\psi}(\xi, \varphi, \phi)|^2 = \frac{2^{n-1}}{|S_{\pi}||S_{\Theta_{\psi}(\sigma)}|} \frac{L_S^{(1/2, \pi \times \tilde{\Theta}_{\psi}(\sigma))}}{L_S(1, \pi, \mathrm{Ad})L_S(1, \Theta_{\psi}(\sigma), \mathrm{Ad})} \Delta_H^{(1/2)} \prod_{j=1}^n \frac{L_S^{(1, \sigma \times \chi_{V_j})}}{\zeta_F^{(2j)}(2j)} \left(\prod_{j=1}^n L_S^{(1, \pi)}(n+1, \chi_V)^{-1} \right) \int_{\mathbf{G}_0(F_v)} \int_{N(F_v)} B_v(\Theta_{\psi}(\pi_v)(n_v g_v) \xi_v, \xi_v) B_v(\varpi_{\lambda, v}(n_v g_v) \psi_v, \psi_v) B_v(\varpi_{\lambda, v}(n_v g_v) \varphi_v, \varphi_v) d n_v d g_v,$$

where $\xi = \otimes \xi_v \in \Theta_{\psi}(\pi)$. Note that $|S_{\pi}||S_{\Theta_{\psi}(\sigma)}| = 2^{7-1}|S_{\Theta_{\psi}(\pi)}||S_{\sigma}|$ by Lemma 5.2.3. Conjecture 2.3.1(3) then follows from Lemma 5.2.2.

8.6. A variant

So far we considered the case $\operatorname{Sp}(2n+2) \times \operatorname{Mp}(2n)$. The case $\operatorname{Mp}(2n+2) \times \operatorname{Sp}(2n)$ is similar. We only mention the following theorem.

Let (V, q_V) be a $2n + 3$ dimensional orthogonal space and $H = \operatorname{O}(V)$. Suppose that $\lambda \in F^\times$ and there is an element $v_0^\lambda \in V$ such that $q_V(v_0^\lambda, v_0^\lambda) = \lambda$. Let V_λ be the orthogonal complement of v_0^λ and $H_\lambda = \operatorname{O}(V_\lambda)$. Let π be an irreducible cuspidal tempered automorphic representation of $H(\mathbb{A}_F)$ and $\Theta_{\psi}(\pi)$ its theta lift to $\operatorname{Mp}(2n+2)(\mathbb{A}_F)$ (with additive character ψ). Let σ be an irreducible cuspidal tempered automorphic representation of $\operatorname{Sp}(2n)(\mathbb{A}_F)$ and $\Theta_{\psi}(\sigma)$ its theta lift to $H_\lambda(\mathbb{A}_F)$.

Theorem 8.6.1. Suppose that $\Theta_{\psi}(\pi)$ and $\Theta_{\psi}(\sigma)$ are both cuspidal. If Conjecture 6.3.1 holds for $(\pi, \Theta_{\psi}(\sigma))$, then Conjecture 2.3.1(3) holds for $(\Theta_{\psi}(\pi), \sigma)$ (with the additive character ψ_λ).

The proof of Theorem 8.6.1 is analogous to Theorem 8.1.1 and we leave the details to the interested reader.

References

School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ, 08540
E-mail address: xuehang@ias.edu