Geometry—Topology Qualifying Exam
Fall 2000

1. Find all meromorphic functions on the Riemann sphere with a simple pole at \(z = 1 \), a simple zero at \(z = 0 \) and no other poles or zeros. Justify your answer.

2. Suppose \(X \) and \(Y \) are metric spaces and \(f : X \rightarrow Y \) is a map from \(X \) to \(Y \). Show that \(f \) is continuous if and only if \(f \) maps convergent sequences in \(X \) into convergent sequences in \(Y \).

3. Let \(M = \{(x, y)| y^2 - x^2 = 1, y > 0\} \subset \mathbb{R}^2 \). Then \(M \) is a one dimensional manifold with the global coordinate function \(x \). For \(a \in \mathbb{R} \) define

\[
R_a \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cosh a & \sinh a \\ \sinh a & \cosh a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cosh a \cdot x + \sinh a \cdot y \\ \sinh a \cdot x + \cosh a \cdot x \end{bmatrix}.
\]

Then it is easy to check that \(R_a : M \rightarrow M \) and also \(R_a R_b = R_{a+b} \) (note: \(\cosh a = \frac{e^a + e^{-a}}{2} \) and \(\sinh a = \frac{e^a - e^{-a}}{2} \)).

Let \(p_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \) be the point in \(M \) with \(x \) coordinate equal to 0. Every point, \(p \), in \(M \) can be expressed in the form \(p = R_a p_0 \) for a unique choice of \(a \in \mathbb{R} \). For \(p = R_a p_0 \) define a vector field \(V(p) = dR_{a,0} \left(\frac{\partial}{\partial x} \right)_{x=0} \) where \(dR_{a,0} : T_{p_0}(M) \rightarrow T_p(M) \) is the derivative of the map \(R_a \) at \(p_0 \) and \(\left(\frac{\partial}{\partial x} \right)_{x=0} \) is the vector field associated with the coordinate function \(x \) evaluated at \(p_0 \). Show that \(V(R_b p) = dR_b V(p) \) and find the expression \(v(x) \frac{\partial}{\partial x} \) for the vector field \(V \) in the coordinate system \(x \).

4. The Laplacian, \(\Delta \), on \(\mathbb{R}^n \) is given by

\[
\Delta f = \sum_{k=1}^{n} \frac{\partial^2 f}{\partial x_k^2}.
\]

An important property of the Laplacian is that it is symmetric on \(C_0^\infty(\mathbb{R}^n) \). That is,

\[
\int_{\mathbb{R}^n} (\Delta f(x)g(x) - f(x)\Delta g(x)) \, dx_1 \wedge \cdots \wedge dx_n = 0
\]

for \(f, g \in C_0^\infty \). Prove this by showing that the \(n \)-form

\[
(\Delta f(x)g(x) - f(x)\Delta g(x)) \, dx_1 \wedge \cdots \wedge dx_n;
\]

is exact for \(f, g \in C_\infty \). Then apply an appropriate version of Stokes’ theorem.

5. Let \(X \) denote the torus with 2 circles pinched to points (see the picture below). Use the Mayer-Vietoris sequence to compute the singular homology \(H_*(X, \mathbb{Z}) \).
6. Let \(p : \mathbb{R} \to S^1 \) be defined by \(p(t) = e^{2\pi i t} = \cos 2\pi t + i \sin 2\pi t \). Note that \(p \) is a covering map. Prove or give a counter example to the following statement: If \(f : \mathbb{R}P^2 \to S^1 \) is continuous then there exists a continuous lift \(\tilde{f} : \mathbb{R}P^2 \to \mathbb{R} \) so that \(f = p \circ \tilde{f} \).

7. Let \(X \) be the set of \(2 \times 2 \) upper triangular complex matrices with determinant 1. Note that \(X \) is a 4 dimensional differentiable manifold. For which integers \(i \) do there exist closed \(i \) forms on \(X \) which are not exact?