1. Compute the following integral,\[\int_0^\infty \frac{\sin(x)}{x} \, dx. \]

2. Let \(f : S^2 \to S^1 \) be a continuous map: Show that there is no continuous map \(g : S^1 \to S^2 \) so that \(f \circ g \) is the identity map on \(S^1 \).

3. Let \(\pi(x) = e^{2\pi i x} \) denote the covering space map from \(\mathbb{R} \) to \(S^1 \). Suppose that \(\varphi : S^1 \to S^1 \) is a continuous map. Show that there exists a continuous map \(\tilde{\varphi} : \mathbb{R} \to \mathbb{R} \) so that \(\pi \tilde{\varphi} = \varphi \pi \). Explain how the degree of the map \(\varphi \) is reflected in the behavior of the function \(\tilde{\varphi} \) and use this construction to show that if \(\varphi \) has degree 1 it is homotopic to the identity map on \(S^1 \).

4. If \(M \) is a compact orientable \(n \)-manifold show that the deRham cohomology, \(H^n(M) \), is not 0.

5. Determine the deRham cohomology for \(\mathbb{R}^n \setminus \text{pt} \) and for \(\mathbb{R}^n \setminus \text{ln} \), where pt = point and ln = line. Use your result for \(\mathbb{R}^3 \setminus \text{ln} \) to say what the deRham cohomology is for \(S^3 \setminus S^1 \) (\(S^1 \) can be taken to be \(S^3 \cap \{x_1 = x_2 = 0\} \)).

6. Consider \(\mathbb{R}^3 \) with coordinates \((x, y, z) \). Write down explicit formulas for the vector fields \(X \) and \(Y \) which represent the infinitesimal generators of rotations about the \(x \)- and \(y \)-axes respectively and compute their Lie bracket.

7. Let \(\Omega = dx \wedge dy \wedge dz \) be the standard volume form on \(\mathbb{R}^3 \). Consider the one form \(\alpha = xdx + ydy + zdz \) and find a two form \(\beta \) on \(\mathbb{R}^3 \setminus \{0\} \) such that \(\Omega = \alpha \wedge \beta \) on \(\mathbb{R}^3 \setminus \{0\} \). Also show that there is no such two form \(\gamma \) defined on all of \(\mathbb{R}^3 \) so that \(\Omega = \alpha \wedge \gamma \).