CALCULATION OF SECOND PARTIALS;
The Gory Details

Using the UV table, the independent variables are Year (Y) and Degrees of Latitude (L), and the dependent variable is Ultraviolet Radiation Units (UV). The point of fascination is $(2000, -70)$, where there are interesting numbers.

I. To get

$$\frac{\partial^2 UV}{\partial Y^2}$$

we need to realize that what is changing is

$$\frac{\partial UV}{\partial Y}$$

so calculate

$$\frac{\partial UV}{\partial Y}$$

twice to get the change in the change.

A. Go left:

$$\frac{\partial UV}{\partial Y} \approx \frac{\Delta UV}{\Delta Y} = \frac{10.36 - 6.36}{2000 - 1995} = \frac{4}{5} = .8 \frac{UV}{Y}$$

B. Go right

$$\frac{\partial UV}{\partial Y} \approx \frac{\Delta UV}{\Delta Y} = \frac{11.46 - 10.36}{2005 - 2000} = \frac{1.1}{5} = .22 \frac{UV}{Y}$$

C. Thus we have:

- An estimate of the partial of UV with respect to Y from 1995 to 2000 of .8, so assign this estimate to 1997.5, the midpoint
- An estimate of the partial of UV with respect to Y from 2000 to 2005 of .22, which we will assign to 2002.5, the midpoint

D. So

$$\left(\frac{\Delta \frac{\partial UV}{\partial Y}}{\Delta Y} \right) = \frac{.22 - .8}{5} = -\frac{.116 \frac{UV}{Y}}{5} \approx \frac{\partial^2 UV}{\partial Y^2}$$
that is the rate of change of $\frac{\partial UV}{\partial t}$ measured in $\frac{UV}{yr}$ is -.116 such $\frac{UV}{yr}$ per year, which we abbreviate $\frac{UV}{yr}$ just like feet-per-second-squared from physics class.

II. Thundering onward

$$\frac{\partial^2 UV}{\partial L^2}$$

is the same, only as Tweedledee said, “contrariwise”

A Go up, 7.64 is for -60 which is larger than -70 because the smaller number is the larger number with minus signs, right?

$$\frac{\partial UV}{\partial L} \approx \frac{\Delta UV}{\Delta L} = \frac{7.64 - 10.36}{-60 - -70} = \frac{-2.72}{10} = -0.272 \frac{UV}{L}$$

B. Go down

$$\frac{\partial UV}{\partial L} \approx \frac{\Delta UV}{\Delta L} = \frac{10.36 - 6.71}{-70 - -80} = +0.365 \frac{UV}{L}$$

C. And with feeling:

$$\left(\frac{\Delta \frac{\partial UV}{\partial L}}{\Delta L} \right) = \frac{-0.272 - 0.365}{10} = \frac{-0.637}{10} = -0.0637 \frac{UV}{L} \approx \frac{\partial^2 UV}{\partial L^2}$$

using the same midpoint trick.

III. La pièce de résistance – the crosspartials – the first being:

$$\frac{\partial^2 UV}{\partial L \partial Y}$$

which is

$$\frac{\partial}{\partial L} \left(\frac{\partial UV}{\partial Y} \right)$$

is it not? Thus the thing which is changing (whose rate of change it is our solemn duty to find) is

$$\frac{\partial UV}{\partial Y}$$

and I need to find how it changes when L changes.
So looking in the table, using bigger \(L \)-numbers, which are really smaller numbers because of the minus signs I see:
\[
\begin{align*}
1.41 & \quad 7.64 & \quad 10.82 & \quad \text{at } L = -60^\circ
\end{align*}
\]
Thus

A. Up, which is high:
\[
\frac{\partial UV}{\partial Y} \approx \frac{7.64 - 1.41}{5} = \frac{6.13}{5} = 1.246 \frac{UV}{Y}
\]
or
\[
\frac{\partial UV}{\partial Y} \approx \frac{10.82 - 7.64}{5} = \frac{3.28}{5} = .636 \frac{UV}{Y}
\]
or
\[
\frac{\partial UV}{\partial Y} \approx \frac{10.82 - 1.41}{10} = \frac{9.41}{10} = .941 \frac{UV}{Y}
\]
and I will use the last one, i.e. the \(\Delta Y \) of 10, though the others are surely OK.

B. Looking down to \(-70^\circ\), (smaller numbers since bigger numbers but with minus signs) I get:
\[
\frac{\partial UV}{\partial Y} \approx \frac{11.46 - 6.36}{10} = \frac{5.1}{10} = .51 \frac{UV}{Y}
\]

C. and so
\[
\frac{\partial}{\partial L} \left(\frac{\partial UV}{\partial Y} \right) = \frac{\partial^2 UV}{\partial L \partial Y} \approx \frac{\Delta \frac{\partial UV}{\partial Y}}{\Delta L} = \frac{.941 - .51}{10} = \frac{.4310}{10} = .0431 \frac{UV}{L}
\]

IV. There’s another one, have good cheer, this is the last:
\[
\frac{\partial^2 UV}{\partial Y \partial L} = \frac{\partial}{\partial Y} \left(\frac{\partial UV}{\partial L} \right)
\]
A. Left (High)
\[
\frac{\partial UV}{\partial L} \approx \frac{10.82 - 6.80}{-60 - (-80)} = \frac{-4.02}{20} = -.2010 \frac{UV}{L}
\]
B. Right (Low)

\[
\frac{\partial U V}{\partial L} \approx \frac{7.64 - 6.71}{-60 - (-80)} = \frac{.93}{20} = .0465 \frac{U V}{L}
\]

C. Thus

\[
\frac{\partial^2 U V}{\partial Y \partial L} \approx \frac{.2010 - .0465}{2005 - 2000} = \frac{.1549}{5} = .0309 \frac{U V}{Y - L}
\]

And our two estimates for the crosspartials are .0431 and .0309, which, given the accuracy of our table is good ’nuff. If I needed a single answer \(\frac{1}{2} (0.0431 + 0.0309) = 0.037 \) would do just fine. Any of the above calculations represents a estimate for the partial involved, and there are several ways to make each of these estimates. That wasn’t so bad, now was it??