The variables $\vec{x}(t) = (x(t), y(t))^T$ describing a vibrating system satisfy

\[
\frac{d^2 x}{dt^2} = 2y - 6x, \quad \frac{d^2 y}{dt^2} = 2x - 9y.
\]

Find the general solution $\vec{x}(t)$ and identify the frequencies at which the vibrations occur.
(2)(10 points) The *Goose and Gherkin* and *No Octopi* are neighboring restaurants that start the year with 75 customers each. The Goose regularly presents live music, with the result that 80 per cent of the patrons one night return on the next night, with the other 20 per cent going to No Octopi for some quiet pizza. Meanwhile 60 per cent of the customers at No Octopi return the next night, with 40 per cent going over to the Goose.

As weeks and weeks go by (i.e. as time goes to infinity), what are the expected numbers of customers at the two restaurants?
A model of guerrilla warfare assumes that the numbers $x(t), y(t)$ of combatants from sides X and Y satisfy

$$\frac{dx}{dt} = -y, \quad \frac{dy}{dt} = -4x.$$

The difference in coefficients indicates that the X forces are 4 times as well-trained and equipped as the Y forces.

(a) (2 points) Express these equations as $\frac{d\vec{x}}{dt} = A\vec{x}$, where $\vec{x}(t) = (x(t), y(t))^T$ and A is the coefficient matrix that reproduces the above equations.

(b) (10 points) Find the eigenvalues and eigenvectors of A.

(c) (10 points) Find an invertible matrix S for which you expect (but don’t have to check) $S^{-1}AS$ is diagonal. Then calculate the matrix exponential e^{tA}.

(d) (5 points) The general of X assumes that their factor of 4 advantage means that with a company of initial strength $x(0) = 100$ they can prevail over an adversary Y of initial strength $y(0) = 300$. Use e^{tA} to find $\vec{x}(t)$.

(d) (5 points) The battle ends when one of the variables becomes equal to zero. Which side will actually be the winner?
Extra workspace for problems 3, 4!
(4)(30 points) Let
\[A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}. \]

(a) (10 points) Calculate \(AA^T \) and find its eigenvalues \(\lambda^{(1)}, \lambda^{(2)} \). What are the singular values?

(b) (10 points) Find the corresponding eigenvectors \(\vec{\xi}^{(1)}_{AA^T}, \vec{\xi}^{(2)}_{AA^T} \) and check that they are orthogonal.

(c) (5 points) The eigenvectors \(\vec{\xi}^{(1)}_{A^TA}, \vec{\xi}^{(2)}_{A^TA} \) of \(A^TA \) are found by multiplying the corresponding eigenvectors of \(AA^T \) by \(A \) or \(A^T \), I can never remember which. Make the correct choice and calculate the new eigenvectors. (Do NOT normalize the lengths to unit magnitude!)

(d) (5 points) Check that the length of each eigenvector you just found for \(A^TA \) equals the product of the length of the corresponding eigenvector of \(AA^T \) and the corresponding singular value.
(5)(20 points) Consider the system of linear equations for the vector $\vec{x} = (x, y)^T$:

\[2x + y = 0, \quad x + y = 2. \]

(a)(10 points) Rearrange these equations into a form in which you can make a reasonable guess for $\vec{x}^{(1)}$ and then systematically obtain better approximations. Calculate the next two approximations $\vec{x}^{(2)}, \vec{x}^{(3)}$ explicitly.

(b)(10 points) By what factor do you expect the errors in the successive approximation method to diminish as the number of repetitions increases? (Give reasons, of course!)