1. Let $R \neq 0$ be a commutative ring with 1 and let $S \subseteq R$ be the subset of nonzero elements which are not zero divisors.

 (a) Show that S is multiplicatively closed.

 (b) By definition, the total ring of fractions of R is the ring $\text{Frac}(R) := S^{-1}R$; it is a ring equipped with a canonical ring homomorphism $R \to S^{-1}R$. If T is any multiplicatively closed subset of R that is contained in S, show that there is a canonical injective ring homomorphism $T^{-1}R \to \text{Frac}(R)$, and conclude that $T^{-1}R$ is isomorphic to a subring of $\text{Frac}(R)$.

 (c) If R is a domain, prove that $\text{Frac}(R)$ is a field and hence that $T^{-1}R$ is a domain for any T as above.

2. Let R be a commutative ring with 1.

 (a) Let $S \subseteq R$ be a multiplicatively closed subset. Prove that the prime ideals of $S^{-1}R$ are in bijective correspondence with the prime ideals of R whose intersection with S is empty.

 (b) If p is an ideal of R, show that $S := R \setminus p$ is a multiplicatively closed subset if and only if p is a prime ideal. Writing R_p for the ring of fractions $S^{-1}R$, show that R_p has a unique maximal ideal, and that this ideal is the image of p under the canonical ring homomorphism $R \to R_p$. (In other words, the localization of R at p is a local ring).

 (c) Let $r \in R$ be arbitrary. Show that the following are equivalent:

 i. $r = 0$

 ii. The image of r in R_p is zero for all prime ideals p of R.

 iii. The image of r in R_p is zero for all maximal ideals p of R.

3. Do exercises 8–11 in §7.6 of Dummit and Foote (inductive and projective limits).

4. A Bézout domain is an integral domain in which every finitely generated ideal is principal.

 (a) Show that a Bézout domain is a PID if and only if it is noetherian.

 (b) Let R be an integral domain. Prove that R is a Bézout domain if and only if every pair of elements $a, b \in R$ has a GCD $d \in R$ that can be written as an R-linear combination of a and b, i.e. such that there exist $x, y \in R$ with $d = ax + by$.

 (c) Prove that a ring R is a PID if and only if it is a Bézout domain that is also a UFD.
(d) Let \(R \) be the quotient ring of the polynomial ring \(\mathbb{Q}[x_0, x_1, \ldots] \) over \(\mathbb{Q} \) in countably many variables by the ideal \(I \) generated by the set \(\{x_i - x_{i+1}^2\}_{i \geq 0} \). Show that \(R \) is a Bézout domain which is not a PID (Hint: have a look at Dummit and Foote, §9.2 #12).

Remark: The above example of a Bézout domain which is not a PID is somewhat artificial. More natural examples include the “ring of algebraic integers” (i.e. the set of all roots of monic irreducible polynomials in one variable over \(\mathbb{Z} \)) and the ring of holomorphic functions on the complex plane. The proofs that these are Bézout domains is, as far as I know, difficult. For example, in the case of the algebraic integers, one needs the theory of class groups).

5. Let \(R = \mathbb{Z}[i] := \mathbb{Z}[X]/(X^2 + 1) \) be the ring of Gaussian integers.

(a) Let \(N : R \to \mathbb{Z}_{\geq 0} \) be the field norm, that is

\[
N(a + bi) := (a + bi)(a - bi) = a^2 + b^2.
\]

Prove that \(R \) is a Euclidean domain with this norm. Hint: there is a proof in the book on pg. 272, but you should try to find a different proof by thinking geometrically.

(b) Show that \(N \) is multiplicative, i.e. \(N(xy) = N(x)N(y) \) and deduce that \(u \in R \) is a unit if and only if \(N(u) = 1 \). Conclude that \(R^\times \) is a cyclic group of order 4, with generator \(\pm i \).

(c) Let \(p \in \mathbb{Z} \) be a (positive) prime number. If \(p \equiv 3 \mod 4 \), show that \(p \) is prime in \(\mathbb{Z}[i] \) and that \(\mathbb{Z}[i]/(p) \) is a finite field of characteristic \(p \) which, as a vector space over \(\mathbb{F}_p \), has dimension 2.

If \(p = 2 \) or \(p \equiv 1 \mod 4 \), prove that \(p \) is not prime in \(\mathbb{Z}[i] \), but is the norm of a prime \(p \in \mathbb{Z}[i] \) with \(\mathbb{Z}[i]/(p) \) isomorphic to the finite field \(\mathbb{F}_p \). Conclude that \(p \in \mathbb{Z} \) can be written as the sum of two integer squares if and only if \(p = 2 \) or \(p \equiv 1 \mod 4 \).