1. Let K/F be a degree 2 extension of fields.
 (a) If the characteristic of F is not 2, prove that $K = F(a)$ for some $a \in K \setminus F$ with $a^2 \in F$.
 (b) Give a counterexample to (1a) if F has characteristic 2.
 (c) Fix F of characteristic not 2 and let K_1, K_2 be quadratic extensions of F with $K_1 = F(a_1)$ and $K_2 = F(a_2)$ where $a_1^2 = b_1 \in F$. Prove that $K_1 \cong K_2$ as extensions of F (i.e. that there exists an isomorphism of fields $K_1 \cong K_2$ restricting to the identity on F) if and only if $b_1/b_2 \in (F^\times)^2$ is a square. Conclude that the isomorphism classes of quadratic extensions of F are in bijection with the group $F^\times/(F^\times)^2$.
 (d) Using (1c), give a complete list (without repetition) of all isomorphism classes of quadratic extensions of \mathbb{Q}.

2. For $a \in \mathbb{F}_p$, set $f_a(x) := X^p - X - a \in \mathbb{F}_p[X]$.
 (a) If $a = 0$, show that $f_a(X) = \prod_{u \in \mathbb{F}_p} (X - u)$.
 (b) Suppose that $a \neq 0$ and let E_a be a splitting field of $f_a(X)$. If $r_1, r_2 \in E_a$ are roots of f_a, prove that $r_1 - r_2 \in \mathbb{F}_p$.
 (c) Show that $f_a(X)$ is irreducible for all $a \in \mathbb{F}_p^\times$.
 (d) Prove that $f_b(X)$ splits completely over E_a for each fixed $a \in \mathbb{F}_p^\times$ and all $b \in \mathbb{F}_p^\times$. Conclude that E_a is independent of a.

3. Find the minimal polynomials of $2 \cos(2\pi/5)$ and $2 \cos(2\pi/7)$ over \mathbb{Q}.

4. For each of the following extensions, determine $[K : F]$ and an F-basis of K.
 (a) $F = \mathbb{Q}$, $L = \mathbb{Q}(a, b)$ with $a^2 = 6$ and $b^3 = 2$.
 (b) $F = \mathbb{C}(T)$ and L is the splitting field of $X^n - T$ over F, with n a positive integer.
 (c) $F = \mathbb{F}_p(T)$ and L is the splitting field of $X^p - T$ over F, with p a prime.

5. Let K/F be a finite extension of fields and let $\alpha \in K$. Then α induces an F-linear map of finite-dimensional F-vector spaces $m_\alpha : K \to K$.
 (a) Prove that α is a root of the characteristic polynomial of the linear map m_α. Hint: select a suitable F-basis of $F(\alpha)$.
 (b) Use (5a) to find a monic degree 3 polynomial with \mathbb{Q}-coefficients satisfied by $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
 (c) Prove that if $K = F(\alpha)$, then the characteristic polynomial of m_α as a linear map $K \to K$ is in fact the minimal polynomial of α over F.

6. For each of the following algebraic elements α of the given field extension K/\mathbb{Q}, express $1/\alpha$ and $1/(\alpha + 1)$ as polynomials in α with \mathbb{Q}-coefficients.
(a) K is the splitting field of $f = X^3 - 3X + 1$ and α is a root of f.
(b) K is the splitting field of $f = X^4 + X^3 + x^2 + x + 1$ and α is a root of f.
(c) K is the splitting field of $f = X^5 - 3X + 3$ and α is a root of f.

7. Prove that $X^4 - 5$ is irreducible over \mathbb{Q} and has splitting field K of degree 8 over \mathbb{Q}. Describe this splitting field explicitly as $\mathbb{Q}(a, b)$ where a is a root of $X^4 - 5$ and $b^2 \in \mathbb{Q}$. In terms of a and b, write down a \mathbb{Q}-basis for K.

8. Describe the splitting fields of $f := X^3 - 5$ over \mathbb{F}_{11} and \mathbb{F}_7 and factor f into linear factors over each extension.