1. Let p be a prime and let K be a splitting field of $X^p - 2 \in \mathbb{Q}[X]$, so K/\mathbb{Q} is a Galois extension. Show that $K = \mathbb{Q}(a, \zeta)$ for $a \in K$ satisfying $a^p = 2$ and $\zeta \in K$ a primitive pth root of unity. Describe generators of $G := \text{Gal}(K/\mathbb{Q})$ in terms of their actions on a and ζ, and describe G as an abstract group (in terms of generators and relations, say). Write out the diagrams of intermediate fields and groups, indicating clearly the various containments. Also indicate which subfields of K are Galois over \mathbb{Q}.

2. Let F be a finite field of size $\#F$, with K/F a finite extension of degree d. Prove that K/F is Galois and that $\text{Gal}(K/F)$ is a cyclic group of order d with generator the automorphism of K given by
 $$\alpha \mapsto \alpha^{\#F}.$$ (This automorphism is called the arithmetic Frobenius map of F).

3. This exercise gives Artin’s proof of the fundamental theorem of Algebra. Let F be a field not of characteristic 2 and assume that all odd degree polynomials in $F[X]$ have a root in F. Let K be a quadratic extension of F with the property that every element of K has a square root in K.
 (a) Prove that any finite extension of K has degree a power of 2. (Hint: Reduce to the Galois case and then consider the fixed field of the 2-Sylow subgroup of the Galois group).
 (b) Prove that K has no non-trivial finite extensions which are Galois over F, and conclude that K is algebraically closed. (Hint: Use the fact that a non-trivial 2-group has an index 2 normal subgroup).
 (c) Let $F = \mathbb{R}$ and $K = \mathbb{R}[X]/(X^2+1)$. Explain (using the intermediate value theorem) why F satisfies the hypotheses above, and using explicit formulae, show that K also satisfies the hypotheses. Conclude that $C := K$ is algebraically closed (this is the Fundamental Theorem of Algebra).

4. Determine the Galois group of the splitting field (over \mathbb{Q}) of $X^4 - 14X^2 + 9$, and write down the lattice of subgroups and corresponding subfields. Which subfields are Galois over \mathbb{Q}?

5. Fix a positive integer n and let $K := \mathbb{Q}(\zeta_n)$ for a primitive nth root of unity $\zeta_n \in \mathbb{C}$. Prove that complex conjugation $\tau \in \text{Aut}(\mathbb{C})$ restricts to an automorphism of K fixing \mathbb{Q}, and show that the corresponding element of $\text{Gal}(K/\mathbb{Q})$ corresponds to -1 under the isomorphism $\text{Gal}(K/\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^\times$. Prove that the fixed field K^+ of the subgroup generated by complex conjugation is equal to the intersection $K \cap \mathbb{R}$ taken inside \mathbb{C}. We call K^+ the maximal real subfield of K.

6. This problem works out a formula for $\cos(2\pi/17)$ in terms of square-root extractions. Let $\zeta := e^{2\pi i/17}$; it is a primitive 17th root of unity. Let $\alpha := \zeta + \zeta^{-1} = 2\cos(2\pi/17)$. Let $\sigma \in \text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ be the element determined by
 $$\sigma \zeta = \zeta^3.$$
(a) Show that \(\sigma \) generates \(\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \).

(b) Define the *periods* of \(\alpha \) to be

\[
\begin{align*}
\eta_1 &:= \alpha + \sigma^2 \alpha + \sigma^4 \alpha + \sigma^8 \alpha \\
\eta_2 &:= \alpha + \sigma^4 \alpha \\
\eta_3 &:= \sigma \eta_2 \\
\eta_1' &:= \sigma \eta_1 \\
\eta_2' &:= \sigma^2 \eta_2 \\
\eta_3' &:= \sigma \eta_2'
\end{align*}
\]

Prove that \(\eta_1, \eta_1' \) are the roots of \(X^2 + X - 4 \), that \(\eta_2, \eta_2' \) are the roots of \(X^2 - \eta_1 X - 1 \), that \(\eta_3, \eta_3' \) are the roots of \(X^2 - \eta_1' - 1 \) and that \(\alpha \) and \(\sigma^4 \alpha \) are the roots of \(X^2 - \eta_2 X + \eta_3 \).

(c) Conclude that \(\cos(2\pi/17) \) is equal to

\[
\frac{1}{16} \left(-1 + \sqrt{17} + \sqrt{2(17 - \sqrt{17})} + 2\sqrt{17 + 3\sqrt{17} - \sqrt{2(17 - \sqrt{17})} - 2\sqrt{2(17 + \sqrt{17})}} \right)
\]

7. Let \(F \) be a field and \(f \in F[X] \) a monic separable polynomial of degree \(n \). Fix a splitting field \(K \) of \(f \) and write \(G := \text{Gal}(K/F) \).

(a) Prove that \(G \) is a subgroup of \(S_n \), the symmetric group on \(n \) letters. If \(f \) is irreducible, prove that \(G \) is a transitive subgroup of \(S_n \) with \(\# G \) divisible by \(n \). (Viewing \(S_n \) as the permutations of an \(n \)-element set \(T \), a transitive subgroup \(G \) is one which acts transitively on these \(n \) elements, i.e. for any \(x, y \in T \) there exists \(g \in G \) such that \(gx = y \).)

(b) Prove that if \(n \) is prime and \(f \) is irreducible, then \(G \) contains an \(n \)-cycle. (Hint: use Sylow’s theorem.)

(c) Suppose that \(f \) is irreducible of degree 5 and has exactly 3 real roots. Prove that \(G \) is isomorphic to \(S_5 \). (Hint: View \(K \) as a subfield of \(\mathbb{C} \) and consider complex conjugation acting on \(K \). Now use (7b) and some group theory.)

8. Keep the notation of the previous problem.

(a) Let \(r_1, \ldots, r_n \) be the \(n \) distinct roots of \(f \) in \(K \), and define the *discriminant* of \(f \) to be

\[
\Delta(f) := \prod_{i,j}(r_i - r_j),
\]

where the product runs over all pairs \((i, j) \in \mathbb{Z}^2 \) with \(1 \leq i, j \leq n \). Prove that \(\Delta(f) \in F \).

(b) Prove that \(G \) is a subgroup of \(A_n \) (the alternating group) if and only if \(\Delta(f) \) is a square in \(F \). Hint: use the formula for \(\Delta(f) \) above and the definition of \(A_n \) as the group of even permutations.