Evaluate the following integrals exactly using the substitution method. In each problem you need to find (i) \(u \), (ii) \(du \), (iii) integral in terms of \(u \), (iv) limits of integration in terms of \(u \) (for the definite integrals), and then (v) evaluate the integral. Use proper notation.

1. \[\int_0^\pi \cos^2\left(\frac{\theta}{5}\right)\sin\left(\frac{\theta}{5}\right)\,d\theta \]
 \(u = \)
 \(du = \)
 \(___ \leq u \leq ___ \)

2. \[\int (t+1)e^{5t+5}\,dt \]
 \(u = \)
 \(du = \)

3. \[\int_0^1 \frac{1+e^{3x}}{e^{3x}+3x}\,dx \]
 \(u = \)
 \(du = \)
 \(___ \leq u \leq ___ \)

4. \(\int \frac{\sin(\ln ax)}{x}\,dx \), where \(a > 0 \)
 \(u = \)
 \(du = \)
5. If \(\int \frac{dx}{1 + \cos x} = \tan \left(\frac{x}{2} \right) + c \), find \(\int \frac{1}{3 + 3 \cos \left(\frac{x}{4} \right)} \) exactly where \(c \) is a constant.

\[w = \]
\[dw = \]

6. If \(\int_{0}^{3} \frac{1}{1 + y^2} \, dy = k \), find \(\int_{0}^{1} \frac{1}{1 + 9x^2} \, dx \) in terms of \(k \).

\[u = \]
\[du = \]

\[___ \leq u \leq ___ \]

7. If \(\int_{0}^{\pi} x \, dx = \frac{\pi^2}{12} \), find \(\int_{0}^{\infty} \frac{x}{e^{5x} + 1} \, dx \) exactly.

\[u = \]
\[du = \]

\[___ \leq u < ___ \]