1. (6) Given the function \(f(x) = x^2 - 3x + 1 \), compute and simplify \(\frac{f(x + 2) - f(x)}{2} \).

2. (4) Given the function \(q(x) = \begin{cases}
-\sqrt{2} & x < -3 \\
-3 & -3 \leq x \leq 3 \\
x^2 - 4 & x > 3
\end{cases} \), evaluate each of the following:

(a) \(q(-4) \)
(b) \(q(-3) \)
(c) \(q(3) \)
(d) \(q(6) \)
3. (3,3,2,2) The cost of manufacturing \(w \) widgets per day is given by the function \(C(w) = -\frac{1}{3}w^2 + 60w + 1500 \) for \(0 \leq w \leq 90 \). The revenue generated by \(w \) widgets is given by \(R(w) = 90w - 177 \). The profit (or loss) generated by \(w \) widgets is given by the difference between the revenue generated by \(w \) widgets and the cost of manufacturing \(w \) widgets.

(a) How many widgets can be manufactured for a cost of $3525?

(b) What is the revenue generated at production level determined in part (a)?

(c) Determine a function \(P(w) \) which represents the profit (or loss) generated by \(w \) widgets.

(d) Determine the zero of \(P \) and explain what it means in practical (“real world”) terms.