Definition: The Jacobian matrix of a map \(f : N \rightarrow M \) is
\[
\begin{pmatrix}
\frac{\partial F^1}{\partial x^1} & \cdots & \frac{\partial F^1}{\partial x^n} \\
\vdots & & \vdots \\
\frac{\partial F^m}{\partial x^1} & \cdots & \frac{\partial F^m}{\partial x^n}
\end{pmatrix}
\] When this is a square matrix, its determinant is called the Jacobian determinant.

Definition: The rank of a smooth map \(F \) is the rank of the Jacobian matrix, which is the largest number of linearly independent columns of the matrix.

Constant Rank Theorem: Let \(N \) and \(M \) be manifolds of dimension \(n \) and \(m \) respectively. If \(f : N \rightarrow M \) has constant rank \(k \) is a neighborhood of a point \(p \in N \), then there are charts \((U, \phi)\) centered at \(p \) and \((V, \psi)\) centered at \(f(p) \) such that \(\psi \circ f \circ \phi^{-1}(r^1, ..., r^n) = (r^1, ..., r^k, 0, ..., 0) \)

Constant-rank level set theorem: If \(f : N \rightarrow M \) is smooth, and if \(f \) has constant rank \(k \) in a neighborhood of \(f^{-1}(c) \), then \(f^{-1}(c) \) is a regular submanifold of \(N \) of codimension \(k \).

Proposition 1: Let \(f : N \rightarrow M \) be a smooth function of manifolds where \(N \) and \(M \) have dimension \(n \) and \(m \) respectively.

1. \(f \) is an immersion at \(p \) iff the rank of the Jacobian matrix of \(F \) equals \(n \leq m \). \(f \) is an immersion if it is an immersion at all points.

2. \(f \) is a submersion at \(p \) iff the rank of the Jacobian matrix of \(F \) equals \(m \leq n \). \(f \) is a submersion if it is a submersion at all points.

Immersion theorem: If \(f : N \rightarrow M \) is an immersion at \(p \), then there are charts \((U, \phi)\) centered at \(p \) and \((V, \psi)\) centered at \(f(p) \) such that \(\psi \circ f \circ \phi^{-1}(r^1, ..., r^n) = (r^1, ..., r^n, 0, ..., 0) \) in a neighborhood of \(\phi(p) \).

Submersion theorem: If \(f : N \rightarrow M \) is a submersion at \(p \), then there are charts \((U, \phi)\) centered at \(p \) and \((V, \psi)\) centered at \(f(p) \) such that \(\psi \circ f \circ \phi^{-1}(r^1, ..., r^m, r^{m+1}, ..., r^n) = (r^1, ..., r^m) \) in a neighborhood of \(\phi(p) \).

Inverse function theorem: Let \(F : N \rightarrow M \) be a smooth map of manifolds with same dimension. Then \(F \) is locally invertible at \(p \in N \) iff its Jacobian determinant at \(p \) is nonzero.

Implicit function theorem: If \(F : U \rightarrow \mathbb{R}^m \) is smooth where \(U \) is an open subset of \(\mathbb{R}^n \times \mathbb{R}^m \), \(f(a, b) = 0 \), and the Jacobian determinant of \(f \) at \((a, b) \) is not zero, then there is a smooth function \(h : A \rightarrow B \) such that \(f(x, y) = 0 \iff y = h(x) \) in \(A \times B \) where \(A \times B \) is an open subset of \(U \) containing \((a, b) \).

Whitney’s theorem: Any smooth \(n \)-dimensional manifold can be smoothly embedded into \(\mathbb{R}^{2n} \).

Stoke’s Theorem: Let \(\omega \) be a smooth \((n-1)\)-form with compact support on an oriented \(n \)-dimensional manifold \(M \). Then \(\int_M d\omega = \int_{\partial M} \omega \).
Proposition 2:
1. $df = \sum_i \frac{\partial f}{\partial x_i} dx_i$
2. If $\omega = \sum_I a_I dx^I$, then $d\omega = \sum_I da_I \wedge dx^I$
3. $d(\omega \wedge \tau) = d\omega \wedge \tau + (-1)^{\text{deg} \omega} \omega \wedge d\tau$

Proposition 3: Let ω be an n-form on S^n. $\int_{S^n} \omega = 0 \iff \omega$ is exact

Proof: If ω is exact, then $\omega = d\tau$. So $\int_{S^n} \omega = \int_{S^n} d\tau = \int_{\partial S^n} \tau = \int_{\emptyset} \tau = 0$. For the converse, note that $H^n(S^n) = \mathbb{R}$ and that the volume ν form on S^n does not integrate to zero. Therefore, the cohomology classes of the n-forms are $[r\nu]$ where $r \in \mathbb{R}$. So every n-form ω of on S^n can be written in the form $\omega = r\nu + \tau$ where τ is exact. $\int_{S^n} \omega = r\int_{S^n} \nu$. If $\int_{S^n} \omega = 0$, then $r = 0$. So $\omega = \tau$ is exact. QED

Proposition 4: A form $\omega = \sum_I a_I dx^I$ is smooth iff all the a_I are smooth functions on each chart.

Proposition 5:
1. A manifold is orientable iff it has a nowhere-vanishing smooth top form.
2. A manifold has a trivial tangent bundle iff it has a smooth global frame.
3. If a manifold has a smooth global frame, then it is orientable.

Definition: A smooth partition of unity on a manifold M is a collection of nonegative function such that their sum is 1 and every point in M has a neighborhood that intersects only finitely many of the supports of the functions.

Proposition 6:
1. Every manifold has a smooth partition of unity with each function having compact support and they may be chosen so that each support lies inside a set of an open cover.
2. Every manifold has a smooth partition of unity that is subordinate to any chosen open cover.

Proposition 7:
1. For a function $f : V \to W$ between vector spaces the pullback of the differential n-form ω is $f^*(\omega)(v_1, \ldots, v_n) = \omega(f_*v_1, \ldots, f_*v_n)$
2. The pullback is linear $f^*(a\omega + b\tau) = af^*(\omega) + bf^*(\tau)$
3. The pullback commutes with the differential $f^*d\omega = df^*\omega$
4. The pullback distributes with the wedge produce $f^*(\omega \wedge \tau) = f^*(\omega) \wedge f^*(\tau)$
Definition: The push forward of a map \(f : M \to N \) is defined by \(f_*(\frac{\partial}{\partial x^j}) = \sum_i \frac{\partial f^i}{\partial x^j} \frac{\partial}{\partial y^i} \).

Hairy ball theorem: If \(n \) is even, then any continuous tangent vector field on \(S^n \) must vanish.

Proposition 8: \(S^0, S^1, S^3, S^7 \) only spheres with trivial tangent bundle.

Borsuk-ulam theorem: For every continuous map \(f : S^2 \to \mathbb{R}^2 \) there is a pair of antipodal points \(x \) and \(-x\) in \(S^2 \) such that \(f(x) = f(-x) \).

Definition: The degree of a map \(f : S^n \to S^n \) is the integer \(d \) such that \(f_*(\alpha) = d\alpha \), where \(f_* : \tilde{H}_n(S^n) \to \tilde{H}_n(S^n) \).

Proposition 9:

1. \(\deg(f) = 0 \) if \(f \) is not surjective.
2. \(\deg(f \circ g) = \deg(f) \cdot \deg(g) \)
3. \(\deg(f) = \pm 1 \) if \(f \) is a homotopy equivalence
4. \(\deg(f) = (-1)^{n+1} \) if \(f \) is the antipodal map
5. \(\deg(f) = \deg(g) \) if \(f \simeq g \). The converse is also true for \(n > 0 \).

Definition: The connected sum \(M \# N \) of two surfaces is the space constructed by removing a disc from each and identifying the boundary circles of the removed discs.

Van Kampen’s theorem: If \(X \) is the union of path-connected open sets \(A_\alpha \) each containing the same base point, and each triple intersection of the \(A_\alpha \) is path-connected, then \(\Pi_1(X) \cong (\ast_\alpha \Pi_1(A_\alpha))/N \) where \(N \) is the normal subgroup generated by all elements of the form \(i_{\alpha\beta}(\omega)i_{\beta\alpha}^{-1}(\omega) \). \(i_{\alpha\beta} \) maps into \(\Pi_1(A_\alpha) \) and \(i_{\beta\alpha} \) maps into \(\Pi_1(A_\beta) \).

Proposition 10: If \(X \) is path-connected, \(H_1(X) = \Pi_1(X)^{ab} \)

Mayer-Vietoris: Let \(U, V \) be open sets whose union is the entire space \(X \). Then the Mayer-Vietoris sequences are exact.

1. For homology \(H_n \), you go from \(U \cap V \) to \(U \cup V \) to \(X = U \cup V \) and then to a lower homology, decreasing \(n \)
2. For cohomology \(H^n \), you go from \(X = U \cup V \) to \(U \cap V \) to \(U \cap V \) and to a higher cohomology, increasing
3. For compact support cohomology \(H^n_c \), go up as in cohomology but reverse the direction. \(n \)
Proposition 11: The alternating sum of the degrees in the Mayer-Vietoris sequence is zero

Proof: This follows from exactness. QED

Proposition 12: $H^n(M \times \mathbb{R}) \cong H^n(M)$

Kunneth formula: For manifolds M and F, $H^n(M \times F) = \oplus_{p+q=n} H^p(M) \otimes \mathbb{R} H^q(F)$

Proposition 13: $\tilde{H}_n(\vee \alpha X_\alpha) \cong \oplus_{\alpha} \tilde{H}_n(X_\alpha)$ provided that (X_α, x_α) are good pairs, where x_α are the base points.

Proposition 14: $H_0(x) \cong \mathbb{Z}^k$, where k is the number of path-components.

Definition: The reduced homology \tilde{H}_n is simply H_n for $n \neq 0$ and has one less \mathbb{Z} summand for $n = 0$.

Definition: A singular n-simplex is a continuous map $\sigma : \Delta^n \to X$. $\partial \sigma = \sum_{i} (-1)^i \sigma|\text{face}_i$. An n-chain is a formal finite \mathbb{Z}-linear combination of n-simplices. The singular homology is those chains without boundary mod those that are the boundary of other chains.

Singular homology:

Definition: The cellular homology of a space X is found by considering the sequence $\cdots \to H_{n+1}(X^{n+1}, X^n) \to H_n(X^n, X^{n-1}) \to H_{n-1}(X^{n-1}, X^{n-2}) \to \cdots$, where $H_n(X^n, X^{n-1}) \cong \mathbb{Z}^k$ where k is the number of n-cells in the complex. The maps between the H_n are the boundary maps, and the cellular homology $H_n(X) = \ker d_n / \text{im } d_{n-1}$ where d_n maps from $H_n(X^n, X^{n-1})$. That is, it maps from the n-cells

Homology and Cohomology of common spaces.

1. S^n The de Rham cohomology is \mathbb{R} in dimension 0 and n and is zero otherwise. For homology replace \mathbb{R} by \mathbb{Z}.

2. \mathbb{R}^n The de Rham cohomology is \mathbb{R} in dimension 0 and is zero otherwise (Poincare lemma). For homology replace \mathbb{R} by \mathbb{Z}.

3. T^2. The homology is $\mathbb{Z}, \mathbb{Z}^2, \mathbb{Z}$ for $n = 0, 1, 2$ respectively, otherwise it’s zero.

Definition: Two maps $f_0 : X \to Y$ and $f_1 : X \to Y$ are homotopic if there exists a continuous function $F : X \times [0, 1] \to Y$ such that $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$. For two paths to be homotopic the end points must be fixed.

Definition: $X \simeq Y := X$ is homotopy equivalent to Y. This means there exist map $f : X \to Y$ and $g : Y \to X$ such that $f \circ g$ and $g \circ f$ are homotopic to the identity.
Definition: $G \cong H := G$ and H are isomorphic

Proposition 15: Homotopy equivalent spaces have the same homology and cohomology.

Definition: A covering space of a space X is a space \tilde{X} together with a map $p : \tilde{X} \to X$ for which there exists an open cover $\{U_{\alpha}\}$ of X such that $p^{-1}(U_{\alpha})$ is a disjoint union of open sets in \tilde{X} each of which is homeomorphic to U_{α} via p. Note p need not be surjective.

Definition: Two covering spaces $p_1 : \tilde{X}_1 \to X$ and $p_2 : \tilde{X}_2 \to X$ are isomorphic if there exists a homeomorphism $f : \tilde{X}_1 \to \tilde{X}_2$ such that $p_1 = p_2 \circ f$.

Definition: The deck transformations $G(\tilde{X})$ of a covering space is the group of isomorphisms of the covering space with itself.

Definition: A covering space is normal if for each pair of lifts \tilde{x}, \tilde{x}' of x there is a deck transformation sending one to the other.

Prop 1.33 in Hatcher: Let $p : (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ be a covering space and Y be a path-connected and locally path-connected space. Then a lift $\tilde{f} : (Y, y_0) \to (\tilde{X}, \tilde{x}_0)$ of $f : (Y, y_0) \to (X, x_0)$ exists iff $f_*(\Pi_1(Y, y_0)) \subseteq p_*(\Pi_1(\tilde{X}, \tilde{x}_0))$. The lift is unique once a based point is fixed.

Proposition 16: If X is path-connected, locally path-connected, and semi-locally simply-connected, then there is a one to one correspondence between subgroups $H \leq \Pi_1(x)$ and covering spaces X_H of X. $p_*(\Pi_1(X_H)) = H$.

Proposition 17: Let $p : \tilde{X} \to X$ be a path-connected covering space of the path-connected locally path-connected space X. Let $H = p_*(\Pi_1(\tilde{X}))$. Then

1. The covering space is normal iff H is a normal subgroup of $\Pi_1(X)$
2. $G(\tilde{X}) \cong N(H)/H$, where $N(H)$ is the normalizer of H in $\Pi_1(X)$
3. It follows that for the universal cover, $G(\tilde{X}) \cong \Pi_1(X)$

Definition: The action of a group G on a space Y is properly discontinuous if each $y \in Y$ has a neighborhood U such that the $g(U)$ are disjoint for different $g \in G$.

Prop 1.40 in hatcher If an action of a group G on a path-connected and locally path-connected space Y is properly discontinuous, then $G \cong \Pi_1(Y/G)/p_*(\Pi_1(Y))$

Proposition 18: If $G \leq Y$ is a finite group acting on Y via multiplication and multiplication on
Y is continuous and every element in Y has an inverse, then the action is properly discontinuous.

Proof: Let y ∈ Y. Then the gy are all distinct, because every element in Y has an inverse. So for each g ∈ G, there is an open neighborhood V_{gy} such that V_{gy} and V_{g'y} are all disjoint. This is possible because G is finite. Let U_g = g^{-1}(V_g), and let U = Π_{g ∈ G} U_g. Each U_g contains y because gy ∈ V_g. So U contains y, and it is open, because it is a finite intersection of open sets. Finally, note that g(U) ⊆ g(U_g) ⊆ V_g. So that the different g(U) are disjoint. Therefore, the action is properly discontinuous. QED

Proposition 19: The two dimensional fractal tree is the universal cover of S^1 ∨ S^1. The three dimensional fractal tree is the universal cover of S^1 ∨ S^1 ∨ S^1.

Definition: For a finite CW complex, the Euler characteristic χ(X) = ∑_{n} (-1)^n c_n where c_n is the number of n-cells in X

Proposition 20: χ(X) = ∑_{n} (-1)^n rankH_n(X). Hence, χ(X) depends only on homotopy type, and is independent of the CW structure on X

Cauchy Riemann equations: If f(x + iy) = u(x, y) + iv(x, y) is differentiable and u, v are real, then \frac{∂u}{∂x} = \frac{∂v}{∂y} and \frac{∂u}{∂y} = -\frac{∂v}{∂x}.

Picardi’s great theorem: If f has an essential singularity at z_0 ∈ U where U is a neighborhood of z_0, then f(U) = C or C \ {point}.

Residue theorem: If f is meromorphic on D and γ is a simple closed curve not passing through a pole of f, then \int_{γ} f(z) dz = 2πi ∑_{poles z_0 enclosed by γ} Res_{z_0} f, where Res_{z_0} f(z) is the coefficient of the term \frac{1}{z-z_0} in the Laurent series.

Cauchy integral formula: If f is analytic, f(z) = \frac{1}{2\pi i} \int_{γ} \frac{f(s)}{s-z} ds, where γ is a path around z.

Open mapping theorem: Any non-constant analytic function is an open mapping.

Maximum modulus principle: If f(z) is a nonconstant function on an open set U, f does not attain a maximum modulus, |f(z)|.

Louiville’s theorem: Any bounded entire function is constant.

Picardi’s little theorem: If f is entire and f(C) omits at least two values, then f is constant.

Riemann’s mapping theorem: If U ⊆ C is open and simply connected and U ≠ C, then there exists an analytic isomorphism U → D, where D is the unit disk.
Conformal maps are all diffeomorphisms.

conformal mapping ingredients: Translation $z \mapsto z + z_0$, Rotation $z \mapsto e^{i\theta}z$, Wrap around origin $z \mapsto z^k$ (k not necessarily an integer), sin(z) half strip to upper half plane, log(z) upper half of unit disc to half horizontal strip in second quadrant, $z \mapsto (z - i)/(z + i)$ takes upper half plane to disc, exponential takes horizontal strip to upper half plane.

Example: quarter disc in first quadrant to vertical half strip in first quadrant.

1. $z \mapsto z^2$ Quarter to half disk

2. $z \mapsto \log z$ half disk to half horizontal strip in second quadrant

3. $z \mapsto e^{-i\pi/2}z$ rotates clockwise 90 degrees.