A Counting

A.1 First principles

If the sample space \(\Omega \) is finite and the outcomes are equally likely, then the probability measure is given by \(P(E) = |E|/|\Omega| \) where \(|E| \) denotes the number of outcomes in the event \(E \). So to compute probabilities in this setting we need to be able to count things.

There are two basic principles:

Addition principle: If I have \(m \) forks and \(k \) knives, then I have \(m + k \) ways to choose a fork or a knife.

Multiplication principle: I have \(m \) forks and \(k \) knives then there are \(mk \) ways to pick a fork and a knife.

Notation:

\[
\begin{align*}
\text{n!} & = n(n-1)(n-2)\cdots 3 \cdot 2 \cdot 1 \\
\binom{n}{k} & = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)\cdots3 \cdot 2 \cdot 1}
\end{align*}
\]

In any counting problem we should ask the following questions
1. Does order matter?
2. Are repetitions allowed?
3. Are objects identical or distinguishable?

We will consider four counting problems:

P1: We have \(n \) different objects. How many ways are there to arrange \(k \) of them in a row? (Repetitions are not allowed.)

P2: We have \(n \) objects, not necessarily different. How many ways to arrange all of them in a row?

P3: We have \(n \) different objects. How many ways to pick a set of \(k \) of them? (The order of the \(k \) chosen does not matter.)

P4: We have \(n \) different types of objects with an unlimited number of each type. How many ways to pick a set of \(k \) objects? (The order does not matter.)

A.2 Permutations

In this section we consider counting problems P1 and P2.
Theorem 1 Given n distinct objects, the number of ways to place k of them in a row without repetitions is
\[
\frac{n!}{(n-k)!} = n(n-1)(n-2) \cdots (n-k+1)
\]

Proof: This follows immediately from the multiplication principle. ■

Sampling terminology I have n balls numbered 1 to n in a hat. I draw a ball, note its number, put it back. I repeat this process a total of k times. This is called **sampling with replacement**. In this case $|\Omega| = n^k$. If we do not replace the ball after it is drawn we call it **sampling without replacement**. In this case
\[
|\Omega| = n(n-1) \cdots (n-k+1) = \frac{n!}{(n-k)!}
\]

We now consider the counting problem $P2$. We have n objects but they are not all different. How many ways to arrange all of them in a row?

Example: I have 5 A’s, 3 B’s and 1 C. How many ways to arrange all 9 letters? Let N be the answer. We find N by first doing a different problem. Suppose we add subscripts to distinguish the letter of the same type. So we have $A_1, A_2, A_3, A_4, A_5, B_1, B_2, B_3, C$ and we ask how many ways to arrange them? This is easy; it is just $(5 + 3 + 1)! = 9!$. Now we count the same thing in a different by a more complicated two stage process. First we arrange the original 5 A’s, 3 B’s and 1 C. There are N ways to do this. Now we add the subscripts 1, 2, 3, 4, 5 to the A’s. There are 5! ways to do this. Then we add the subscripts 1, 2, 3 to the B’s. There are 3! ways to do this. Finally we add the 1 to the C; there is only 1 = 1! way to do this. So the number of ways to add all the subscripts is 5!3!1!. So the second solution gives $N5!3!1!$. Of course, both solution should give the same answer, so
\[
9! = N5!3!1!
\]
Solving for N we have
\[
N = \frac{9!}{5!3!1!}
\]

We generalize this as a theorem.

Theorem 2 Suppose we have r types of objects. We have n_j of type j. Let $n = \sum_{j=1}^{r} n_j$ be the total number of objects. Then the number of ways to arrange all n objects in a line is
\[
M_n(n_1, \cdots, n_r) = \frac{n!}{\prod_{j=1}^{r} n_j!}
\]
Remark: Suppose we only want to arrange \(k \) of the above \(n \) objects where \(k < n \). This is a much harder counting problem and there is no simple formula.

Proof: Consider a different problem. Add labels \(1, 2, \ldots, n_j \) to the objects of type \(j \) so we can tell them apart. Then there are simply \(n! \) ways to arrange all of them. We can count this in a more complicated way by first arranging the original objects and then adding labels. There are \(M_n(n_1, \ldots, n_r) \) ways to arrange the original objects. The number of ways to add labels to the objects of type \(j \) is \(n_j! \). So the total number of ways to add labels to all of them is \(\prod_{j=1}^{n} n_j! \). The two solutions must give the same answer, so

\[
n! = M_n(n_1, \ldots, n_r) \prod_{j=1}^{n} n_j!
\]

The equation in the theorem follows. \(\blacksquare \)

Terminology: The number \(M_n(n_1, \ldots, n_r) \) is called a “multinomial coefficient.” If \(r = 2 \), we have

\[
M_n(n_1, n_2) = \frac{(n_1 + n_2)!}{n_1! n_2!} = \binom{n_1 + n_2}{n_1} = \binom{n_1 + n_2}{n_2}
\]

which is called a binomial coefficient.

Example: I have 10 identical balls and 5 different urns. I am going to put each ball into one of the urns.

(a) How many ways if there are no restrictions? In particular an urn can be empty and there is no limit to the number in an urn.

(b) How many ways if we add the restriction that each urn must contain at least one ball?

Solution: For (a) we will turn it into a word problem. The urns are different so we can label them 1, 2, 3, 4, 5. Line them up in order. We then represent a choice of how to put the balls in by a word with 10 “B”’s and 4 “X”’s. The X’s mark the boundary between two urns. So the word BBXBBBBBBXBBX means we put 2 balls into the first urn, 5 into the second urn, 2 into the third urn, none into the fourth urn and 1 into the fifth urn. Conversely, if we put 3 balls into the first urn, none into the second urn, 4 into the third urn, 1 into the fourth urn and 2 into the fifth urn, then the word is BBBXXBBBBBXBBXBB. There is a one to one correspondence between ways of putting the balls into the urns and words with 10 B’s and 4 X’s. Note that the number of X’s is one less than the number of urns since there are only 4 “boundaries” between the urns.

You may be tempted to add an X at the start and end of your word. Why is this a bad idea? Now we have a simple word counting problem. The number of words with 10 B’s and 4 X’s is

\[
\frac{14!}{10!4!}
\]
For part (b), we can start by putting one ball into each urn. Then we are left with 5 balls to put into the urns with no constraints. This is the same as the part (a) with 5 balls instead of 10. So the answer is

\[
\frac{9!}{5!4!}
\]

The method used in the above example proves the following theorem. As we will see at the end of the next section, this is really counting problem P4 in disguise.

Theorem 3 Given \(r\) identical objects and \(n\) different urns, the number of ways to put the objects into the urns with no constraint except that all the objects must be placed is

\[
\frac{(r + n - 1)!}{r!(n - 1)!} = \binom{n + r - 1}{r}
\]

A.3 Combinations

We now consider counting problem P3. We have \(n\) different objects. How many ways to pick a set of \(k\) of them if the order of the \(k\) chosen does not matter.

Theorem 4 The number of ways to pick a set of \(k\) objects from \(n\) different objects is

\[
\binom{n}{k} = \frac{n!}{k!(n - k)!}
\]

Proof: We will prove a more general version of this theorem later. □

Example: Suppose we draw 5 cards from a deck.
(a) What is the probability of a flush? (All cards of the same suit.)
(b) What is the probability of two pair? (A pair means two cards with the same number.)

Solution: In both parts we take the sample space to be all subsets with 5 cards. We do not care about the order of the five cards. So

\[
|\Omega| = \binom{52}{5}
\]

(a) First we pick a suit (4 choices). Then we pick 5 cards from that suit. So the probability is

\[
\frac{4\binom{13}{5}}{\binom{52}{5}} \approx 0.2\%
\]

(b) First we choose the “numbers” for the two pairs. This amounts to choosing a subset of 2 from 13. (The order does not matter. A pair of 2’s and a pair of jacks is the same as
a pair of jacks and a pair of 2’s.) Then for each of the two numbers we choose two suits. So the probability is

\[
\frac{\binom{13}{2} \binom{4}{2} \binom{4}{2}}{\binom{52}{5}} \approx 4.8\%
\]

Example: A hat has 10 one dollar bills, 12 five dollar bills. I draw 8 at random (without replacement). What is the probability I get 6 one dollar bills and 2 five dollar bills?

Solution:

\[
\frac{\binom{10}{6} \binom{12}{2}}{\binom{22}{8}}
\]

The above example generalizes.

Theorem 5 A hat contains balls with \(m\) different colors. There are \(r_i\) balls of the \(i^{th}\) color, \(i = 1, 2, \ldots, m\). We draw \(n\) balls without replacement. Let \(X_i\) be the number of balls of color \(i\). Then

\[
P(X_1 = k_1, X_2 = k_2, \ldots, X_m = k_m) = \frac{\prod_{i=1}^{m} \binom{r_i}{k_i}}{\binom{N}{n}}
\]

where \(N\) is the total number of balls in the hat, i.e., \(N = r_1 + r_2 + \cdots + r_m\). (Of course the \(k_i\) must sum to \(n\).)

Picking a set of \(r\) from a set of \(n\) is equivalent to dividing the objects into two groups. One group is the set of chosen objects, the other group is the set of those not chosen. So the number of ways to divide a set of \(r\) into two distinguishable groups with \(n_1\) in the first group and \(n_2\) in the second group is

\[
\binom{n}{n_1} = \frac{n!}{n_1!n_2!}
\]

assuming of course that \(n_1 + n_2 = n\). This generalizes to more than two groups:

Theorem 6 Given \(n\) different objects, the number of ways to divide them into \(r\) different groups with \(n_i\) in the \(i^{th}\) group is

\[
\frac{n!}{\prod_{i=1}^{r} n_i!}
\]

(We are assuming the order within a group does not matter.)
Proof: Let \(N \) be the answer to the above problem. Consider a different counting problem - the number of ways of arranging all \(n \) in a row. Of course there are \(n! \) ways to do this. Now consider doing it in two stages. First divide them into groups \(1, 2, \cdots, r \) with \(n_i \) in group \(i \). Then arrange the objects in each group in linear order. For group \(i \) there are \(n_i! \) ways to do this. These two stages give a linear order for all the objects: we put group 1 on the left, arranged in its chosen order, then group 2, arranged in its chosen order, ..., and finally group \(r \) on the right arranged in its chosen order. The two ways of counting the number of arrangements of all \(n \) must agree, so

\[
n! = N \prod_{i=1}^{r} n_i!
\]

Solving for \(N \) proves the theorem. \(\blacksquare \)

The last theorem of the previous section can be reformulated as a combination problem. Note that this solves counting problem P4.

Theorem 7 If we have \(n \) types of objects and an unlimited number of each type, the number of ways to choose a subset of \(k \) is

\[
\binom{n+k-1}{k}
\]

Proof: Think of the \(n \) types as \(n \) urns. Initially we have \(k \) identical objects. We assign them types by putting them into the urns. \(\blacksquare \)