Propagation of singularities for the wave equation

Let \(u(t, x) \) be the solution of the initial value problem for the wave equation in \(\mathbb{R}^n \):

\[
\begin{align*}
 u_{tt} &= \Delta u, \\
 u(0, x) &= 0, \\
 u_t(0, x) &= f(x).
\end{align*}
\]

(1)

At this point, I assume that \(f(x) \in L^2(\mathbb{R}^n) \) and that the function \(f(x) \) has compact support. In the end of these notes, I discuss the general case \(f \in \mathcal{D}'(\mathbb{R}^n) \). To solve the problem (1), one makes the Fourier transform \(u(t, x) \mapsto \hat{u}(t, \xi), f(x) \mapsto \hat{f}(\xi) \). Then

\[
\hat{u}_{tt} + |\xi|^2 \hat{u} = 0, \quad \hat{u}(0, \xi) = 0, \quad \hat{u}_t(0, \xi) = \hat{f}(\xi).
\]

The last problem can be easily solved:

\[
\hat{u}(t, \xi) = \frac{\sin(t|\xi|)}{|\xi|} \hat{f}(\xi).
\]

(2)

Notice that formula (2) makes perfect sense when \(f \) is a distribution; then \(\hat{f} \) is a distribution, and \(\hat{u}(t) \) is a distribution for any fixed value of \(t \). Our goal is to localize the wave front set of \(u(t) \) in terms of the wave front set of \(f \). By \(u(t) \) I denote the function \(u(t, \cdot) \).

The formula (2) implies immediately that \(\hat{u}(t, \xi) \) is rapidly decaying (by “rapidly decaying” I always mean “decaying faster than any negative power of \(1 + |\xi| \)” exactly in the directions where \(\hat{f}(\xi) \) is rapidly decaying. Therefore

\[
\Sigma(u(t)) = \Sigma(f).
\]

(3)

In particular, the solution is a smooth function if the initial condition is smooth. We take the inverse Fourier transform of \(\hat{u}(t, \xi) \) to get

\[
u(t, x) = (2\pi)^{-n} \int \frac{\sin(t|\xi|)}{|\xi|} e^{ix\xi} \hat{f}(\xi) d\xi.
\]

(4)

It is convenient to express the sin function as a combination of exponential functions and to break the integral (4) into the sum of two integrals. However, if one does this then each integral will be divergent in a neighborhood of \(\xi = 0 \). To avoid this problem, I introduce a cut-off function \(\chi(\xi) \). This is a smooth function that equals 1 when \(|\xi| \geq 1 \), and it vanishes when \(|\xi| \leq 1/2 \). Then

\[
u(t, x) = \left(\frac{2\pi}{2i} \right)^{-n} (u_+(t, x) - u_-(t, x)) + (2\pi)^{-n} \int (1 - \chi(\xi)) \frac{\sin(t|\xi|)}{|\xi|} e^{ix\xi} \hat{f}(\xi) d\xi
\]

(5)

where

\[
u_\pm(t, x) = \int \frac{\chi(\xi)}{|\xi|} e^{i[(x-y)\pm t|\xi|]} \hat{f}(\xi) d\xi.
\]

(6)
The function $1 - \chi(\xi)$ vanishes outside the unit ball, so the last term in (5) represents a smooth function. Therefore, $WF(u(t)) \subset WF(u_+(t)) \cup WF(u_-(t))$. Notice that $u_-(t) = u_+(t)$, so it is sufficient to study $WF(u_+(t))$; then $WF(u_-(t)) = WF(u_+(t))$.

First, we prove the following lemma.

Lemma 1. Let $\Sigma_1(f) = \Sigma(f) \cap \{\xi : |\xi| = 1\}$. Then

$$
sing\ supp(u_+(t)) \subset supp(f) - t\Sigma_1(f).
$$

For two sets $A, B \subseteq \mathbb{R}^n$, by $A - B$ we denote the set of all differences $x - \xi$ where $x \in A$ and $\xi \in B$.

Proof. Let x_0 be a point that does not belong to $supp(f) - t\Sigma_1(f)$. We have to show that $x_0 \notin sing\ supp(u_+(t))$. Choose a neighborhood U of the point x_0 and a conic neighborhood Γ of $\Sigma(f)$ such that

$$
U \cap (supp(f) - t\Gamma) = \emptyset;
$$

here $\Gamma = \Gamma \cap \{\xi : |\xi| = 1\}$. We introduce a cut-off function $\psi(\xi)$ that satisfies the following properties:

(i) $\psi(\xi) \in C^\infty(\mathbb{R}^n \setminus \{0\})$;

(ii) $\psi(\xi)$ is homogeneous of degree 0, i.e. $\psi(t\xi) = \psi(\xi)$ for every $t > 0$;

(iii) $\psi(\xi) = 1$ when ξ belongs to a neighborhood of $\Sigma(f)$;

(iv) $\psi(\xi) = 0$ when $\xi \notin \Gamma$.

We break the integral that represents $u_+(t, x)$ (see (6)) into the sum $u_1^+(t, x) + u_2^+(t, x)$ where

$$
u_1^+(t, x) = \int \frac{\psi(\xi)\chi(\xi)}{|\xi|} e^{i(x\xi + t|\xi|)} \hat{f}(\xi) d\xi
$$

and

$$
u_2^+(t, x) = \int (1 - \psi(\xi))\chi(\xi) e^{i(x\xi + t|\xi|)} \hat{f}(\xi) d\xi.
$$

The Fourier transform $\hat{f}(\xi)$ of the function f is a rapidly decaying function on the support of $1 - \psi(\xi)$, so $u_2^+(t, x)$ is a smooth function, and the singular support of $u_+(t, x)$ is the same as of $u_1^+(t, x)$. Now we use the Fourier transform formula for $\hat{f}(\xi)$ to rewrite (9) in the form

$$
u_1^+(t, x) = \int \int \frac{\psi(\xi)\chi(\xi)}{|\xi|} e^{i(x - y)\xi + t|\xi|} f(y) dy d\xi.
$$

We will do a number of partial integrations in (10). Let $D_j = D_{\xi_j} = (1/i)\partial/\partial \xi_j$. One has

$$
D_j e^{i(x - y)\xi + t|\xi|} = \left(\frac{x - y + t \xi}{|\xi|}\right)_j e^{i(x - y)\xi + t|\xi|}.
$$

Introduce a first order differential operator

$$
L = \sum_{j=1}^n \frac{(x - y + t(\xi/|\xi|))}{|x - y + t(\xi/|\xi|)|^2} D_j.
$$
Notice that the denominators in (12) do not vanish when \(x \in U, \ y \in \text{supp}(f) \) and \(\xi \in \text{supp}(\psi) \) (see (8).) I denote the \(D_j \)-coefficient in (12) by \(a_j(x, y, \xi) \). It is a homogeneous of degree 0 in \(\xi \) function that depends on \(x \) and \(y \) smoothly. The formula (11) implies

\[
Le^{[(x-y)\xi+t|\xi|]} = e^{[(x-y)\xi+t|\xi|]}.
\]

Therefore,

\[
u^1_+(t, x) = \int \int \frac{\psi(\xi) \chi(\xi)}{|\xi|} L^k \left(e^{i[(x-y)\xi+t|\xi|]}f(y)dyd\xi \right)
= \int \int (L^t)^k \left(\frac{\psi(\xi) \chi(\xi)}{|\xi|}\right)e^{i[(x-y)\xi+t|\xi|]}f(y)dyd\xi
\]

where

\[
L^t = -\sum_{j=1}^n a_j(x, y, \xi) D_j + b(x, y, \xi)
\]

with

\[
b(x, y, \xi) = -\frac{1}{i} \sum_{j=1}^n \frac{\partial a_j(x, y, \xi)}{\partial \xi_j}.
\]

The number \(k \) in (13) is arbitrary.

Reminder. Let \(z \) be any complex number. A function \(h(\xi) \) defined on \(\mathbb{R}^n \setminus \{0\} \) is called homogeneous of degree \(z \) if

\[
h(\tau \xi) = \tau^z h(\xi), \quad \tau > 0.
\]

A homogeneous function of degree \(z \) is completely determined by its values on the unit sphere in \(\mathbb{R}^n \). We will use the following fact: a partial derivative of a homogeneous function of degree \(z \) is a homogeneous function of degree \(z - 1 \). To see that, one differentiates both sides of (14) with respect to \(\xi_j \). We say that \(h(\xi) \) is homogeneous of degree \(z \) when \(|\xi| \geq R \) is (14) holds for when \(|\xi| \geq R \) and \(\tau \geq 1 \).

As we have already noticed, the coefficients \(a_j \) are homogeneous in \(\xi \) of degree 0. The free term \(b(x, y, \xi) \) in (13) is \(\xi \)-homogeneous of degree \(-1\).

Exercise. Show that

\[
(L^t)^k = \sum_{|\alpha| \leq k} a_{\alpha}(x, y, \xi) D^\alpha
\]

where the coefficient \(a_{\alpha}(x, y, \xi) \) is \(\xi \)-homogeneous of degree \(|\alpha| - k \).

In (13), the operator \((L^t)^k\) is applied to the function \(\chi(\xi)\psi(\xi)/|\xi| \), which is homogeneous of degree \(-1\) when \(|\xi| \geq 1 \). The function \(D^\alpha(\chi(\xi)\psi(\xi)/|\xi|) \) is homogeneous of degree \(-1 - |\alpha|\) when \(|\xi| \geq 1 \), so \((L^t)^k(\chi(\xi)\psi(\xi)/|\xi|)\) is homogeneous of degree \(-k - 1\) when
$|\xi| \geq 1$. Differentiating this function with respect to x and y does not change its degree of homogeneity in ξ. Therefore, for any multi-index β,

$$|D_\xi^\beta((L^1)^k(x(\xi)\psi(\xi)/|\xi|))| \leq C_\beta(1 + |\xi|)^{-k-1}$$

(15)

when $x \in U$, $y \in \text{supp}(f)$, and $\xi \in \text{supp}(\psi)$. The function $\hat{f}(\xi)$ is bounded as the Fourier transform of an L^1-function, so, by taking $k = n + N$, we make sure that the integral (13) can be differentiated up to N times with respect to x. The number N is arbitrary. Therefore, $u_+^1(x) \in C^\infty(U)$. In particular, $x_0 \notin \text{sing supp}(u(t))$.

Q.E.D.

Corollary 2.

$$\text{sing supp}(u_+(t)) \subset \text{sing supp}(f) - t\Sigma_1(f).$$

(16)

Proof. Suppose that $x_0 \notin \text{sing supp}(f) - t\Sigma_1(f)$. Then there exists a neighborhood U of sing supp(f) such that $x_0 \notin U - t\Sigma_1(f)$. Let $\phi(x) \in C_0^\infty(U)$ and $\phi(x) = 1$ in a neighborhood of sing supp(f). The function $u_+(t)$ is the sum of $u_+^1(t)$ and $u_+^2(t)$ where $u_+^1(t)$ corresponds to the initial condition $\phi(x)f(x)$ and $u_+^2(t)$ corresponds to the initial condition $(1 - \phi(x))f(x)$. Notice that $(1 - \phi(x))f(x) \in C_0^\infty$, so $u_+^2(t) \in C^\infty$. Then, $x_0 \notin \text{supp}(\phi f) - t\Sigma_1(\phi f)$ because $\sigma(\phi f) \subset \Sigma(f)$. By Lemma 1, $x_0 \notin \text{sing supp}u_+(t)$.

Q.E.D.

Now, we are ready to formulate the “propagation of singularities theorem.”

Theorem. Let $u(t)$ be the solution of the problem (1) at the moment t. Then

$$\text{sing supp}(u(t)) \subset S_+(t) \cup S_-(t)$$

(17)

where

$$S_\pm(t) = \bigcup_{(x,\xi) \in WF(f)}(x \mp t(\xi/|\xi|)).$$

(18)

The Theorem has a simple interpretation. For a point $x_0 \in \text{sing supp}(f)$, draw all the rays that emanate from x_0 and that have ξ as its direction vector where $(x_0, \pm \xi) \in WF(f)$. Let $S_{x_0}(t)$ be the union of points that lie on these rays and that are at the distance t from x_0. Then

$$\text{sing supp}(u(t)) \subset \bigcup_{x_0 \in \text{sing supp}(f)}S_{x_0}(t).$$

In short, this means that the singularities of the wave equation are propagated with the velocity ± 1 in the directions of the wave front set of the initial data. One can prove a sharper version of the Theorem that gives a localization for the wave front set of $u(t)$, not just for the sing succu(t).

Proof of the Theorem. First, I assume that $f(x)$ is an L^2 function with compact support. Suppose that $x_0 \notin S_+(t)$. Then $x \notin y - t(\Sigma_0(f) \cap S^{n-1})$ for every $y \in \text{supp}(f)$.

Here, as usual, S^{n-1} is the unit sphere. By Proposition 3 from the notes on the wave front set, there exists a neighborhood U_y of the point y such that

$$x_0 \notin U_y - t\Sigma_1(\phi f)$$

(19)

for every function $\phi \in C_0^\infty(U_y)$. The neighborhoods U_y cover $\text{supp}(f)$. We have assumed that $\text{supp}(f)$ is compact, so one can find a finite number of them, U_1, \ldots, U_p, that still
Let \(\{ \phi_j \} \) be a partition of unity that corresponds to the covering \(\{ U_j \} \): functions \(\phi_j(x) \in C_0^\infty(U_j) \) and their sum equals 1 in a neighborhood of \(\text{supp}(f) \). Then the solution of the problem (1) is the sum of the functions \(u_j(t) \) that solve that problem with \(f(x) \) replaced by \(\phi_j(x)f(x) \). Let \(u_{j,\pm} \) be the corresponding “half-solutions”. By Lemma 1, (19) implies that \(x_0 \notin \text{sing supp}(u_{j,+}(t)) \) for all \(j \). Therefore, \(x_0 \notin \text{sing supp}(u_+(t)) \). By replacing \(t \mapsto -t \), one concludes that \(x_0 \notin S_-(t) \) implies \(x_0 \notin \text{sing supp}(u_-(t)) \). This proves the Theorem in the case when \(f \) is an \(L^2 \) function with compact support.

One can easily remove the assumption of \(f \) having a compact support. To do that, one recalls from the standard PDE course that solutions of the wave equation are propagated with speed 1, that is
\[
\text{supp}(u(t)) \subset \{ x : \text{dist}(x, \text{supp} f) \leq |t| \}. \tag{20}
\]
Suppose that the support of \(f \) is not compact. Let \(x_0 \) be a point. We would like to find out whether \(x_0 \in \text{sing supp}(u(t)) \). Take a function \(\psi(x) \in C_0^\infty(\mathbb{R}^n) \) such that \(\psi(x) = 1 \) when \(|x - x_0| \leq |t| + 1 \). Let \(\tilde{u}(t) \) be the solution of the problem (1), with \(f(x) \) replaced by \(\psi(x)f(x) \). The relation (20) implies \(u(x,t) = \tilde{u}(x,t) \) when \(|x - x_0| < 1 \). One notices that \(\text{WF}(\psi f) \subset \text{WF}(f) \) and applies the Theorem to \(\tilde{u}(t) \).

Let \(f \) be a distribution with compact support. Then one can represent \(f \) in the form \(f = (1 - \Delta)^k g \) where \(g(x) \in L^2(\mathbb{R}^n) \). In fact, the Fourier transform of the function \(f \) satisfies the estimate
\[
|\hat{f}(\xi)| \leq C(1 + |\xi|)^m
\]
for some number \(m \). We take
\[
g(x) = (2\pi)^{-n} \int e^{ix\xi} \frac{\hat{f}(\xi)}{(1 + |\xi|^2)^k} d\xi \tag{21}
\]
where \(k \) is chosen in such a way that \(2k - m > n/2 \) (that guarantees \(\hat{f}(\xi)/(1 + |\xi|^2)^k \in L^2 \)). We will prove later that \(\text{WF}(g) \subset \text{WF}(f) \) (the function \(g \) is a pseudodifferential operator applied to \(f \), and, as we will see, this is a general property of pseudodifferential operators.) Let \(v(t,x) \) be the solution of the problem (1), with \(f \) replaced by \(g(x) \). Then \(u(t) = (1 - \Delta)^k u(t) \), so \(\text{supp} u(t) \subset \text{sing supp} v(t) \). Now, we can apply the theorem to \(v(t) \) and derive the statement about \(u(t) \) from that.

Q.E.D.