Symmetric Operator and their extensions

1. Let A be a densely defined linear operator in a Hilbert space H. We say that a complex number λ is a point of regular type for A if

$$|| (\lambda I - A) x || \geq C ||x||, \quad x \in D(A)$$

(1)

where C is a positive constant and $D(A)$ is the domain of A.

Notations. By $R_\lambda(A)$ I will denote the range of the operator $\lambda I - A$.

Proposition 1. Let A be a closed operator, and let λ be a point of regular type. Then $R_\lambda(A)$ is closed.

Proof. Let $y_n = \lambda x_n - Ax_n \to y$. Then $||x_n - x_m|| \leq ||y_n - y_m||/C$ (see (1)). Therefore, $\{x_n\}$ is a Cauchy sequence, and $x_n \to x$. On the other hand, $Ax_n \to \lambda x - y$. The operator A is closed, so $x \in D(A)$ and $Ax = \lambda x - y$. We conclude that $y = (\lambda I - A)x \in R_\lambda(A)$.

QED

Exercise. Show that if A is a closable operator and λ is a point of regular type for A then $R_\lambda(A) = R_\lambda(A)$.

Definition. Let A be a closable operator in a separable Hilbert space H, and let λ be a point of regular type for A. The codimension of the subspace $R_\lambda(A)$ in H is called or the deficiency number of λ, and it will be denoted by $\text{def}(\lambda; A)$ or $m(\lambda; A)$.

Remark. For a closed operator A, λ is a regular point iff it is a point of regular type and $m(\lambda; A) = 0$.

Theorem 2. Let A be a closable operator in a separable Hilbert space H. The set of points of regular type of A is open, and $m(\lambda; A)$ is constant on each connected components of this set.

Proof. 1. Let λ be a point of regular type for A; so (1) holds. Take any point μ such that $|\mu - \lambda| < C/2$. Then

$$|| (\mu I - A) x || \geq || (\lambda I - A) x || - |\lambda - \mu| ||x|| \geq (C/2)||x||,$$

(2)

so μ is a point of regular type.

2. To prove that $m(\lambda; A)$ is constant on connected components of the set of points of regular type, one has to show that the function $m(\lambda; A)$ is continuous in λ. Let λ be a point of regular type such that (1) holds, and let $|\mu - \lambda| < C/4$. Then (2) holds. We will show that $\dim R_\lambda(A) = \dim R_\mu(A)$.

Lemma 3. Let L_1 and L_2 be subspaces of a Hilbert space H, and let P_j be the orthogonal projection onto L_j, $j = 1, 2$. If $||P_1 - P_2|| < 1$ then $\dim L_1 = \dim L_2$.

Proof. The restriction of P_1 to L_2 is a one-to-one mapping into. In fact, if $P_1 x = 0$ and $x \in L_2$, then $||(P_1 - P_2)x|| = ||x|| = ||x||$, and $x = 0$. Therefore, $\dim L_2 \leq \dim L_1$. Clearly, the opposite inequality also holds.

QED

By $\Theta(L_1, L_2)$ we denote the number $\sup_{x \in L_1 \setminus 0} ||x - P_2 x||/||x||$.

Exercise. Show that

$$||P_1 - P_2|| = \max\{\Theta(L_1, L_2), \Theta(L_2, L_1)\}.$$
To finish the prove of the theorem, it is sufficient to show that both \(\Theta(R_{\lambda}(A), R_{\mu}(A)) \) and \(\Theta(R_{\mu}(A), R_{\lambda}(A)) \) are smaller then 1. Indeed, the difference between the orthogonal projections onto \(R_{\lambda}(A) \perp \) and \(R_{\mu}(A) \perp \) is the same as the difference between orthogonal projections onto \(R_{\lambda}(A) \) and \(R_{\mu}(A) \). One has

\[
\Theta(R_{\lambda}(A), R_{\mu}(A)) = \sup_{x} \inf_{y} \frac{||x||}{||y||} \frac{||x - (\mu I - A)x||}{||y - (\lambda I - A)y||} \leq \sup_{x} \frac{||x||}{||x||} \leq 1/4.
\]

In the last inequality, to get an upper bound for the infimum over \(y \), I took \(y = x \). The number \(\Theta(R_{\mu}(A), R_{\lambda}(A)) \) can be estimated in a similar way.

QED

Exercise. Let \(A \) be a closed operator. Show that \(R_{\lambda}(A) \perp = \ker(\lambda I - A^*) \).

2. An operator \(A \) is called symmetric if \((Ax, y) = (x, Ay) \) for every \(x, y \in D(A) \). Equivalently, \(A \subset A^* \). The last characterization implies that symmetric operators are always closable. Another useful characterization of the class of symmetric operators is given by the following proposition.

Proposition 4. An operator \(A \) is symmetric iff the quadratic form \((Ax, x) \), \(x \in D(A) \), is real-valued.

Proof. The "only if" part is obvious. Let us prove the "if" part. Take \(x, y \in D(A) \). Then

\[
0 = \Im(A(x + iy), x + iy) = \Im((Ay, x) - (Ax, y)) = \Re((Ay, x) - (Ax, y)).
\]

Therefore,

\[
\Re(Ax, y) = \Re(Ay, x) = \Re(Ay, x) = \Re(x, Ay)
\]

for all \(x, y \in D(A) \). Replacing \(x \) by \(ix \), we conclude that \(\Im(Ax, y) = \Im(x, Ay) \), and \((Ax, y) = (x, Ay) \).

QED

Let \(A \) be a symmetric operator. I will show now that all points outside the real axis are points of regular type for \(A \). Let \(\lambda = \sigma + i\tau \), \(\tau \neq 0 \). Then

\[
||x||^2 \geq \left||((\lambda I - A)x, x)||/||x|| \right|^2 \geq \left|\Im((\lambda I - A)x, x)||/||x|| \right| = |\tau||x||.
\]

I have used the fact that \((Ax, x) \) is a real number. Theorem 2 implies that \(m(\lambda; A) \) is constant in the upper half plane: we denote this constant by \(m_+(A) \). It is also constant in the lower half plane: that constant is denoted by \(m_-(A) \). If there is at least one real point of regular type then the whole set of points of regular type is connected, and \(m_+(A) = m_-(A) \). Otherwise, these two numbers may be different.

From this point I will fix a complex number \(\lambda \) from the upper half plane. The next theorem tells us exactly what the domain of \(A^* \) is.

Theorem 5. Let \(A \) be a closed symmetric operator, and let \(\lambda \) be a non-real complex number. Then

\[
D(A^*) = D(A) + R_\lambda(A) \perp + R_\lambda(A) \perp.
\]

Proof. Both \(R_\lambda^\perp \) and \(R_\lambda^\perp \) are eigenspaces of \(A^* \) (the corresponding eigenvalues are \(\lambda \) and \(\lambda^* \)) so they lie inside of \(D(A^*) \). This proves the \(\supset \) inclusion.
Let } x \in D(A^*) \text{. The vector } \lambda x - A^* x \text{ can be decomposed as a sum of a vector from } R_\lambda(A) \text{ and a vector from } \ker(\lambda I - A^*); \text{ the last vector will be denoted by } (\lambda - \bar{\lambda}) z:

\lambda x - A^* x = \lambda y - A y + (\lambda - \bar{\lambda}) z.

Here } y \in D(A) \text{ and } A^* z = \bar{\lambda} z. \text{ The last equality implies}

A^*(x - y - z) = \lambda(x - y - z).

Therefore, } w = x - y - z \in R_\lambda(A)^+. \text{ What remains to be proved is that } x + y + z = 0, x \in D(A), A^* y = \bar{\lambda} y, A^* z = \lambda z \text{ implies } x = y = z = 0. \text{ Indeed, we apply the operator } A^* \text{ to the equation } x + y + z = 0 \text{ to get } Ax + \lambda y + \lambda z = 0. \text{ We subtract the last equality from } \lambda x + \lambda y + \lambda z = 0: (\lambda I - A)x + (\lambda - \bar{\lambda})y = 0. \text{ The terms in the last equality belong two two mutually orthogonal subspaces of } H. \text{ Therefore, both of them must vanish. In particular, } y = 0. \text{ Similarly, } z = 0.

\text{QED}

\textbf{Corollary.} A closed symmetric operator } A \text{ is self-adjoint iff } m_+(A) = m_-(A) = 0.

3. \text{ Let } B \text{ be a symmetric extension of } A. \text{ Then } A \subset B \subset B^* \subset A^*. \text{ In particular this means that}

\[D(B) \subset D(A^*) = D(A) + R_\lambda(A)^+ + R_\lambda(A)^- \]

and, on this domain, } B \text{ acts like } A^*. \text{ Keeping in mind Proposition 4, to find possible domains of symmetric extensions of } A, \text{ we would like to know for which vectors } x \in D(A) \text{ the imaginary part of } (A^* x, x) \text{ vanishes. Let } x = x_0 + x_1 + x_2 \text{ where } x_0 \in D(A), A^* x_1 = \lambda x_1, \text{ and } A^* x_2 = \lambda x_2. \text{ A simple computation shows that}

\[3(A^* x, x) = 3\lambda (||x_2||^2 - ||x_1||^2). \]

Therefore, } x \text{ may belong to } D(B) \text{ only if}

\[||x_1|| = ||x_2||. \tag{3} \]

On the other hand, if (3) holds for every } x \in D(B) \text{ then the operator } B \text{ is symmetric by Proposition 4. Let } G = D(B) \cap (R_\lambda(A)^+ + R_\lambda(A)^-). \text{ Then } G \text{ is the graph of an isometry } V \text{ from a subspace } L \subset R_\lambda(A)^\perp \text{ into } R_\lambda(A)^\perp. \text{ We conclude that every symmetric extension of } A \text{ can be obtained is the following way. Let } V \text{ be an isometry from } L \subset R_\lambda(A)^\perp \text{ into } R_\lambda(A)^\perp. \text{ Let } \Gamma(V) \text{ be the graph of } V. \text{ Then one takes } D(B) = D(A) + \Gamma(V), \text{ and } B \text{ acts on its domain as } A^*.

\text{Let us compute } m_{\pm}(B). \text{ It is easy to see that } R_\lambda(B) = R_\lambda(A) + L \text{ and } R_{-\lambda}(B) = R_{-\lambda}(A) + VL. \text{ Therefore, } m_+(B) = \dim R_\lambda(A)^\perp / L \text{ and } m_-(B) = \dim R_{-\lambda}(A)^\perp / VL. \text{ In particular, } m_+(B) = 0, \text{ and } B \text{ is self-adjoint iff } L = R_\lambda(A)^\perp \text{ and } VL = R_{-\lambda}(A)^\perp. \text{ Such an isometry exists iff } m_+(A) = m_-(A). \text{ Let us formulate our conclusions as a theorem.}

\textbf{Theorem 6.} \text{ Let } A \text{ be a closed symmetric operator in a separable Hilbert space } H. \text{ It has a self-adjoint extension iff } m_+(A) = m_-(A). \text{ If this condition is met then every self-adjoint extension of } A \text{ can be obtained by the following construction. Fix a non-real complex number } \lambda, \text{ and let } V \text{ be an isometry from } R_\lambda(A)^\perp \text{ onto } R_{-\lambda}(A)^\perp. \text{ Then } D(A V) = D(A) + \Gamma(V) \text{ where } \Gamma(V) \text{ is the graph of } V.