6.11a) Let R be the relation on \mathbb{N} given by xRy iff x divides y.

Proposition 1 R is reflexive and transitive, but not symmetric.

Proof. We check the properties individually:

- Reflexive: If $n \in \mathbb{N}$, then $n = (1)n$, so n divides n. The relation is reflexive.
- Symmetric: This property is not satisfied. Notice that 2 divides 4 but 4 does not divide 2, so $2R4$ but $4 \not\in R2$.
- Transitive: Let $x, y, z \in \mathbb{N}$ such that xRy and yRz, so there are integers m, n such that $y = mx$ and $z = ny$. Thus there is $z = (mn)x$, so x divides z and xRz. Thus the relation is transitive.

6.11b) Let X be a set and let R be the relation “\subseteq” defined on subsets of X.

Proposition 2 R is reflexive and transitive, but not symmetric unless $X = \emptyset$.

Proof. We check the properties individually:

- Reflexive: If $A \subseteq X$, then $A \subseteq A$, so ARx. Thus R is reflexive.
- Symmetric: This property is not satisfied unless X is the empty set, since we see that $\emptyset \subseteq X$, but $X \not\subseteq \emptyset$, so $\emptyset RX$ and $X \not\in R\emptyset$. If X is the empty set, then it is clearly true.
- Transitive: Let A, B, C be subsets of X. Suppose ARB and BRC. Then $A \subseteq B$ and $B \subseteq C$. It follows that $A \subseteq C$ since if $x \in A$, then $x \in B$ then $x \in C$. Thus ARC. Thus the relation is transitive.

6.20) Let R be a relation on \mathbb{Z} defined by xRy iff $x - y = 3k$ for some integer k.

Proposition 3 R is an equivalence relation.

Proof. We check the properties of an equivalence relation individually:

- Reflexive: Let $x \in \mathbb{Z}$. Then $x - x = 0 = 3(0)$, so xRx.
- Symmetric: Let $x, y \in \mathbb{Z}$ such that xRy. Thus there exists $k \in \mathbb{Z}$ such that $x - y = 3k$. It follows that $y - x = 3(-k)$, so yRx.
- Transitive: Let $x, y, z \in \mathbb{Z}$ such that xRy and yRz. Thus there exist k and k' in \mathbb{Z} such that $x - y = 3k$ and $y - z = 3k'$. We then see that

$$x - z = (x - y) + (y - z) = 3k + 3k' = 3(k + k').$$

Thus xRz.

The equivalence class \([5] = E_5\) consists of all integers equivalent to 5, i.e., all \(x \in \mathbb{Z}\) such that \(5 - x = 3k\) for some integer \(k\). Thus
\[
[5] = \{5 - 3k : k \in \mathbb{Z}\} = \{2 + 3k : k \in \mathbb{Z}\}.
\]

We note that there are three equivalence classes: \([0]\), \([1]\), \([2]\), since we can always see that, for \(x \in \mathbb{Z}\),
\[
[x] = \left[x - 3 \left(\frac{x}{3}\right)\right].
\]

\([x]\), “the floor of \(x\),” denotes the largest integer less than or equal to \(x\).) Notice that
\[
\frac{x}{3} - 1 < \left[\frac{x}{3}\right] \leq \frac{x}{3},
\]
so
\[
-x \leq -3 \left[\frac{x}{3}\right] < 3 - x,
\]
and
\[
0 \leq x - 3 \left(\frac{x}{3}\right) < 3.
\]

Thus \([x]\) always equals \([0]\) or \([1]\) or \([2]\).

6.25) Define a relation \(R\) on \(\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})\) by \((a, b) R (x, y)\) iff \(ay = bx\).

Proposition 4 \(R\) is an equivalence relation.

Proof. We prove each property individually:

- **Reflexive:** For any \((a, b) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})\), we have that \(ab = ba\), so \((a, b) R (a, b)\).

- **Symmetric:** Suppose \((a, b) R (x, y)\). Then \(ay = bx\), so \(xb = ya\) and \((x, y) R (a, b)\).

- **Transitive:** Suppose \((a, b) R (c, d)\) and \((c, d) R (e, f)\). Then \(ad = bc\) and \(cf = de\). Thus, since \(d \neq 0\),
\[
af = \frac{adf}{d} = \frac{bce}{d} = \frac{be}{d}.
\]

Thus, \((a, b) R (e, f)\).

The equivalence classes are in correspondence with rational numbers in the following sense. The ordered pair \((a, b) R (x, y)\) if and only if \(\frac{a}{b} = \frac{x}{y}\), i.e., they represent the same rational number. Thus each equivalence class consists of all possible representations of rational numbers as a quotient of integers, and the set of all equivalence classes corresponds to the set of all rational numbers.