Let \(u(x, t) \) = density (heat, momentum, probability,...) so that

\[
\int_R u \, d\mathbf{x} = \text{amount in region } R \subset \Omega.
\]
Let $u(x, t) = \text{density (heat, momentum, probability, ...)}$ so that

$$\int_R u \, dx = \text{amount in region } R \subset \Omega.$$

A quantity is *conserved* if it can be gained or lost only

- by flow through domain boundaries,
- because of sources and sinks in the domain.
Let $u(x, t) = \text{density (heat, momentum, probability,...)}$ so that

$$\int_R u \, dx = \text{amount in region } R \subset \Omega.$$

A quantity is *conserved* if it can be gained or lost only
- by flow through domain boundaries,
- because of sources and sinks in the domain.

Model ingredients:
- The flow or *flux* is a vector field $\mathbf{J}(x, t)$, so that $\mathbf{J} \cdot \hat{n} \, dA$ is flow across infinitesimal area $\hat{n} \, dA$.
- $Q(x, t)$ is the rate of inflow at point x.

Conservation of $u(x, t)$ on any region $R \subset \Omega$ implies

$$
\frac{d}{dt} \int_{R} u \, dx = \int_{R} \frac{\partial u}{\partial t} \, dx = -\int_{\partial R} J \cdot \hat{n} \, dx + \int_{R} Q(x, t) \, dx.
$$

(recall notation: ∂R is boundary of R, \hat{n} is outward normal vector)
Conservation of $u(x, t)$ on any region $R \subset \Omega$ implies

$$\frac{d}{dt} \int_R u \, dx = \int_R \frac{\partial u}{\partial t} \, dx = -\int_{\partial R} \mathbf{J} \cdot \mathbf{n} \, dx + \int_R Q(x, t) \, dx.$$

(recall notation: ∂R is boundary of R, \mathbf{n} is outward normal vector)

Use divergence theorem to turn boundary integral into integral on region R,

$$\int_R \left(\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{J} - Q \right) \, dx = 0.$$
Deriving a PDE for a conserved quantity

Conservation of \(u(x, t) \) on any region \(R \subset \Omega \) implies

\[
\frac{d}{dt} \int_R u \, dx = \int_R \frac{\partial u}{\partial t} \, dx = -\int_{\partial R} \mathbf{J} \cdot \mathbf{n} \, d\mathbf{x} + \int_R Q(x, t) \, dx.
\]

(recall notation: \(\partial R \) is boundary of \(R \), \(\mathbf{n} \) is outward normal vector)

Use divergence theorem to turn boundary integral into integral on region \(R \),

\[
\int_R \left(\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{J} - Q \right) \, dx = 0.
\]

Since this is true for any subregion \(R \), integrand is zero:

\[
\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{J} = Q.
\]

conservation form/continuity equation/transport equation
Flux-type boundary conditions specify flow $F(x) : \partial\Omega \to \mathbb{R}$ through physical boundary.
Flux-type boundary conditions specify flow $F(\mathbf{x}) : \partial \Omega \rightarrow \mathbb{R}$ through physical boundary.

Flux is typically modeled as a function of u and its derivatives $\mathbf{J} = \mathbf{J}(u, \nabla u, \ldots)$; boundary condition becomes

$$\mathbf{J}(u, \nabla u, \ldots) \cdot \hat{n} = F(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega.$$
Flux-type boundary conditions specify flow $F(x) : \partial \Omega \to \mathbb{R}$ through physical boundary.
Flux is typically modeled as a function of u and its derivatives $J = J(u, \nabla u, \ldots)$; boundary condition becomes

$$J(u, \nabla u, \ldots) \cdot \hat{n} = F(x), \quad x \in \partial \Omega.$$

Example: for heat diffusion, Fourier’s law says $J = -D \nabla u$. Thus

$$-D \nabla u \cdot \hat{n} = F(x), \quad x \in \partial \Omega,$$
 Flux-type boundary conditions specify flow $F(x) : \partial \Omega \to \mathbb{R}$ through physical boundary. Flux is typically modeled as a function of u and its derivatives $J = J(u, \nabla u, \ldots)$; boundary condition becomes

$$J(u, \nabla u, \ldots) \cdot \hat{n} = F(x), \quad x \in \partial \Omega.$$

Example: for heat diffusion, Fourier's law says $J = -D \nabla u$. Thus

$$-D \nabla u \cdot \hat{n} = F(x), \quad x \in \partial \Omega,$$

More specifically, if boundary is insulating, get "Neumann" boundary condition

$$\nabla u \cdot \hat{n} = 0.$$

Remark: Dirichlet boundary condition $u = U(x), \quad x \in \partial \Omega$ will not guarantee flux is zero at boundary.
Suppose that $u = u(x, t)$ is transported at velocity c, so that (one dimensional) scalar flux is $J = cu$.
Example: transport and traffic flow

Suppose that \(u = u(x, t) \) is transported at velocity \(c \), so that (one dimensional) scalar flux is \(J = cu \).

Then \(\frac{\partial u}{\partial t} + \nabla \cdot J = Q \) becomes (assuming \(Q = 0 \))

\[
 u_t + cu_x = 0. \quad \text{(linear transport equation)}
\]
Example: transport and traffic flow

Suppose that \(u = u(x, t) \) is transported at velocity \(c \), so that (one dimensional) scalar flux is \(J = cu \).

Then \(\frac{\partial u}{\partial t} + \nabla \cdot J = Q \) becomes (assuming \(Q = 0 \))

\[
 u_t + cu_x = 0. \quad \text{(linear transport equation)}
\]

Traffic flow: speed can be modeled as a decreasing function of density \(c = c_0 - mu \), so \(J = u(c_0 - mu) \); conservation law becomes

\[
 u_t + c_0 u_x - m(u^2)_x = 0. \quad \text{(nonlinear transport equation)}
\]
Example: Diffusion with a source

Random motions of particles (and other things) leads to diffusion. Means that net flow has a direction toward regions of less density.
Example: Diffusion with a source

Random motions of particles (and other things) leads to diffusion. Means that net flow has a direction toward regions of less density.

Simplest model: Fick/Fourier law $\mathbf{J} = -D \nabla u$.
Example: Diffusion with a source

Random motions of particles (and other things) leads to diffusion. Means that net flow has a direction toward regions of less density.

Simplest model: Fick/Fourier law \(\mathbf{J} = -D \nabla u \). Sources \(Q(x, t) \) created by, for example heat production or chemical reactions.
Random motions of particles (and other things) leads to diffusion. Means that net flow has a direction toward regions of less density.

Simplest model: Fick/Fourier law $\mathbf{J} = -D \nabla u$. Sources $Q(x, t)$ created by, for example heat production or chemical reactions. The conservation equation becomes

$$u_t = D \nabla \cdot \nabla u + Q = D \Delta u + Q,$$

(diffusion equation)
Conserved quantity is momentum density $\rho u_t(x, t)$, where $\rho =$ mass density.
Conserved quantity is momentum density $\rho u_t(x, t)$, where $\rho = \text{mass density}$

Momentum flux occurs because of force imbalance between parts of material; simplest model is $J = -\sigma \nabla u$.
Conserved quantity is momentum density $\rho u_t(x, t)$, where $\rho =$ mass density

Momentum flux occurs because of force imbalance between parts of material; simplest model is $J = -\sigma \nabla u$.

Momentum conservation leads to

$$(u_t)_t = c^2 \nabla \cdot \nabla u = c^2 \Delta u,$$ \hspace{1cm} \text{(wave equation)}$$

where $c^2 = \sigma / \rho$.
Often dynamical processes “settle down”; for PDEs this means the time derivative can be ignored.
Steady state equations

Often dynamical processes “settle down”; for PDEs this means the time derivative can be ignored. For a conservation law with flux $J(u)$ and time independent source term Q, a *steady state solution* solves

$$\nabla \cdot J(u) = Q.$$

Interpretation: the amount flowing into a region in space equals the amount flowing out.
Often dynamical processes “settle down”; for PDEs this means the time derivative can be ignored.
For a conservation law with flux \(\mathbf{J}(u) \) and time independent source term \(Q \), a *steady state solution* solves

\[
\nabla \cdot \mathbf{J}(u) = Q.
\]

Interpretation: the amount flowing into a region in space equals the amount flowing out.

Example (diffusion with a source): Flux is given by Fick’s law \(\mathbf{J} = -D \nabla u \), and \(Q(x, y) \) is a prescribed source term.
Often dynamical processes “settle down”; for PDEs this means the time derivative can be ignored. For a conservation law with flux $J(u)$ and time independent source term Q, a *steady state solution* solves

$$\nabla \cdot J(u) = Q.$$

Interpretation: the amount flowing into a region in space equals the amount flowing out.

Example (diffusion with a source): Flux is given by Fick’s law $J = -D\nabla u$, and $Q(x, y)$ is a prescribed source term. Steady state $u = u(x, y)$ solves

$$D\nabla \cdot \nabla u = \Delta u = Q(x, y).$$

If $Q \neq 0$, get *Poisson’s equation*; if $Q \equiv 0$, get *Laplace’s equation*.
Salient fact: solutions of PDEs have a lot of detail, but...
Salient fact: solutions of PDEs have a lot of detail, but...

- We can’t always know everything about them (especially nonlinear equations)
- Even if we could, often hard to see the essential aspects.
Salient fact: solutions of PDEs have a lot of detail, but...

- We can’t always know everything about them (especially nonlinear equations)
- Even if we could, often hard to see the essential aspects.

Idea: use coarse-grained quantities to study solutions qualitatively. Some of these are inspired by physics (energy, entropy), whereas others are completely abstract.
A *functional* $F[u]$ maps u to the real numbers, e.g.

$$F[u] = \int_{\Omega} u(x) \, dx \quad \text{or} \quad F[u] = \int_{\Omega} |\nabla u|^2 \, dx.$$

In our case, these are often quantities of physical interest (mass, energy, momentum)
Conserved and dissipated quantities

A functional $F[u]$ maps u to the real numbers, e.g.

$$F[u] = \int_{\Omega} u(x) \, dx \quad \text{or} \quad F[u] = \int_{\Omega} |\nabla u|^2 \, dx.$$

In our case, these are often quantities of physical interest (mass, energy, momentum).

Let $u(x, t) : \Omega \times [0, \infty) \to \mathbb{R}$ be a solution of some PDE, and suppose $F[u]$ has the form

$$F[u(t)] = \int_{\Omega} f(u, u_x, \ldots) \, dx.$$

so that F can be regarded as depending on t.
A functional $F[u]$ maps u to the real numbers, e.g.

$$F[u] = \int_{\Omega} u(x) \, dx \quad \text{or} \quad F[u] = \int_{\Omega} |\nabla u|^2 \, dx.$$

In our case, these are often quantities of physical interest (mass, energy, momentum).

Let $u(x, t) : \Omega \times [0, \infty) \rightarrow \mathbb{R}$ be a solution of some PDE, and suppose $F[u]$ has the form

$$F[u(t)] = \int_{\Omega} f(u, u_x, \ldots) \, dx.$$

so that F can be regarded as depending on t.

Time evolution of $F[u]$ may be categorized as:

- If $dF/dt = 0$ for all u, then F is called conserved,
- If $dF/dt \leq 0$ for all u, then F is called dissipated.
Example: energy in the wave equation

Let u solve

$$u_{tt} = u_{xx}, \quad u(0, t) = 0 = u(L, t).$$
Example: energy in the wave equation

Let u solve

$$u_{tt} = u_{xx}, \quad u(0, t) = 0 = u(L, t).$$

Energy functional

$$E(t) = \int_0^L \frac{1}{2} u_t^2 + \frac{1}{2} u_x^2 \, dx$$

is conserved.
Example: energy in the wave equation

Let u solve

$$u_{tt} = u_{xx}, \quad u(0, t) = 0 = u(L, t).$$

Energy functional

$$E(t) = \int_0^L \frac{1}{2} u_t^2 + \frac{1}{2} u_x^2 \, dx$$

is conserved. First differentiate under integral sign:

$$\frac{dE}{dt} = \int_0^L u_t u_{tt} + u_x u_{xt} \, dx,$$

If $u(x, 0) = 0 = u_t(x, 0)$ initially, does the solution remain zero?

Yes, since $E(0) = 0$, $E(t) \equiv 0$, thus $u_x \equiv 0$. Using boundary conditions gives $u(x, t) \equiv 0$.

Converse also true: if $u(x, 0) \neq 0$ initially, then solution never "dies out".
Example: energy in the wave equation

Let u solve

$$u_{tt} = u_{xx}, \quad u(0, t) = 0 = u(L, t).$$

Energy functional

$$E(t) = \int_{0}^{L} \frac{1}{2} u_t^2 + \frac{1}{2} u_x^2 \, dx$$

is conserved. First differentiate under integral sign:

$$\frac{dE}{dt} = \int_{0}^{L} u_t u_{tt} + u_x u_{xt} \, dx,$$

Integrate by parts

$$\frac{dE}{dt} = u_x u_t \bigg|_{x=0}^{x=L} + \int_{0}^{L} u_t u_{tt} - u_{xx} u_t \, dx,$$

Then use equation and boundary conditions to get $dE/dt = 0$. If $u(x, 0) = 0 = u_t(x, 0)$ initially, does the solution remain zero? Yes, since $E(0) = 0$, $E(t) \equiv 0$, thus $u_x \equiv 0$. Using boundary conditions gives $u(x, t) \equiv 0$. Conversely, if $u(x, 0) \neq 0$ initially, then solution never "dies out."
Example: energy in the wave equation

Let u solve

$$u_{tt} = u_{xx}, \quad u(0, t) = 0 = u(L, t).$$

Energy functional

$$E(t) = \int_0^L \frac{1}{2} u_t^2 + \frac{1}{2} u_x^2 \, dx$$

is conserved. First differentiate under integral sign:

$$\frac{dE}{dt} = \int_0^L u_t u_{tt} + u_x u_{xt} \, dx,$$

Integrate by parts

$$\frac{dE}{dt} = u_x u_t \bigg|_{x=0}^{x=L} + \int_0^L u_t u_{tt} - u_{xx} u_t \, dx,$$

Then use equation and boundary conditions to get $dE/dt = 0$.

If $u(x, 0) = 0 = u_t(x, 0)$ initially, does the solution remain zero?
Example: energy in the wave equation

Let \(u \) solve

\[
 u_{tt} = u_{xx}, \quad u(0, t) = 0 = u(L, t).
\]

Energy functional

\[
 E(t) = \int_0^L \frac{1}{2} u_t^2 + \frac{1}{2} u_x^2 \, dx
\]

is conserved. First differentiate under integral sign:

\[
 \frac{dE}{dt} = \int_0^L u_t u_{tt} + u_x u_{xt} \, dx,
\]

Integrate by parts

\[
 \frac{dE}{dt} = u_x u_t \big|_{x=0}^{x=L} + \int_0^L u_t u_{tt} - u_{xx} u_t \, dx,
\]

Then use equation and boundary conditions to get \(dE/dt = 0 \).

If \(u(x, 0) = 0 = u_t(x, 0) \) initially, does the solution remain zero?
Yes, since \(E(0) = 0, E(t) \equiv 0, \) thus \(u_x \equiv 0 \). Using boundary conditions gives \(u(x, t) \equiv 0 \).
Example: energy in the wave equation

Let u solve
\[u_{tt} = u_{xx}, \quad u(0, t) = 0 = u(L, t). \]

Energy functional
\[E(t) = \int_0^L \left(\frac{1}{2} u_t^2 + \frac{1}{2} u_x^2 \right) dx \]
is conserved. First differentiate under integral sign:
\[\frac{dE}{dt} = \int_0^L u_t u_{tt} + u_x u_{xt} \, dx, \]
Integrate by parts
\[\frac{dE}{dt} = u_x u_t \bigg|_{x=0}^{x=L} + \int_0^L u_t u_{tt} - u_{xx} u_t \, dx, \]
Then use equation and boundary conditions to get $dE/dt = 0$.

If $u(x, 0) = 0 = u_t(x, 0)$ initially, does the solution remain zero?
Yes, since $E(0) = 0, E(t) \equiv 0$, thus $u_x \equiv 0$. Using boundary conditions gives $u(x, t) \equiv 0$.
Converse also true: if $u(x, 0) \neq 0$ initially, then solution never “dies out”.
Example: heat equation

Suppose u solves the diffusion equation

$$u_t = u_{xx}, \quad u(0, t) = 0 = u(L, t).$$
Example: heat equation

Suppose \(u \) solves the diffusion equation

\[
 u_t = u_{xx}, \quad u(0, t) = 0 = u(L, t).
\]

Then the quantity

\[
 F(t) = \int_{0}^{L} \frac{1}{2} u_x^2 \, dx
\]

is dissipated,

One interpretation: arclength of \(x \)-cross sections of \(u \) can be approximated

\[
 \int_{0}^{L} \sqrt{1 + u_x^2} \, dx \approx \int_{0}^{L} 1 + \frac{1}{2} u_x^2 \, dx.
\]

Since \(dF/dt \leq 0 \), arclength diminishes and spatial oscillations die away.
Example: heat equation

Suppose u solves the diffusion equation

$$u_t = u_{xx}, \quad u(0, t) = 0 = u(L, t).$$

Then the quantity

$$F(t) = \int_0^L \frac{1}{2} u_x^2 \, dx$$

is dissipated, since

$$\frac{dF}{dt} = \int_0^L u_x u_{xt} \, dx = -\int_0^L u_{xx} u_t \, dx = -\int_0^L u_{xx}^2 \, dx \leq 0,$$

One interpretation: arclength of x-cross sections of u can be approximated

$$\int_0^L \sqrt{1 + u_x^2} \, dx \approx \int_0^L 1 + \frac{1}{2} u_x^2 \, dx.$$
Example: heat equation

Suppose \(u \) solves the diffusion equation
\[
 u_t = u_{xx}, \quad u(0, t) = 0 = u(L, t).
\]

Then the quantity
\[
 F(t) = \int_0^L \frac{1}{2} u_x^2 \, dx
\]
is dissipated, since
\[
 \frac{dF}{dt} = \int_0^L u_x u_{xt} \, dx = - \int_0^L u_{xx} u_t \, dx = - \int_0^L u_{xx}^2 \, dx \leq 0,
\]

One interpretation: arclength of \(x \)-cross sections of \(u \) can be approximated
\[
 \int_0^L \sqrt{1 + u_x^2} \, dx \approx \int_0^L 1 + \frac{1}{2} u_x^2 \, dx.
\]

Since \(dF/dt \leq 0 \), arclength diminishes and spatial oscillations die away.