Solutions of differential equations using transforms

Process:

- Take transform of equation and boundary/initial conditions in one variable.
- Derivatives are turned into multiplication operators.
- Solve (hopefully easier) problem in k variable.
- Inverse transform to recover solution, often as a convolution integral.
Ordinary differential equations: example 1

\[- u'' + u = f(x), \quad \lim_{|x| \to \infty} u(x) = 0.\]
Ordinary differential equations: example 1

\[-u'' + u = f(x), \quad \lim_{|x|\to\infty} u(x) = 0.\]

Transform using the derivative rule, giving

\[k^2 \hat{u}(k) + \hat{u}(k) = \hat{f}(k).\]

Just an algebraic equation, whose solution is

\[\hat{u}(k) = \frac{\hat{f}(k)}{1 + k^2}.\]
Ordinary differential equations: example 1

\[- u'' + u = f(x), \quad \lim_{|x| \to \infty} u(x) = 0.\]

Transform using the derivative rule, giving

\[k^2 \hat{u}(k) + \hat{u}(k) = \hat{f}(k).\]

Just an algebraic equation, whose solution is

\[\hat{u}(k) = \frac{\hat{f}(k)}{1 + k^2}.\]

Inverse transform of product of \(\hat{f}(k)\) and \(1/(1 + k^2)\) is convolution:

\[u(x) = f(x) \ast \left(\frac{1}{1 + k^2} \right) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} f(y) dy.\]

But where was far field condition used?
Example 2. The *Airy* equation is

\[u'' - xu = 0, \quad \lim_{|x| \to \infty} u(x) = 0. \]
Example 2. The *Airy* equation is

\[u'' - xu = 0, \quad \lim_{|x| \to \infty} u(x) = 0. \]

Transform leads to

\[-k^2 \hat{u}(k) - i\hat{u}'(k) = 0. \]
Example 2. The *Airy* equation is

\[u'' - xu = 0, \quad \lim_{|x| \to \infty} u(x) = 0. \]

Transform leads to

\[-k^2 \hat{u}(k) - i\hat{u}'(k) = 0. \]

Solve by separation of variables: \(d\hat{u}/\hat{u} = ik^2 dk \) integrates to

\[\hat{u}(k) = Ce^{ik^3/3}. \]
Example 2. The *Airy* equation is

\[u'' - xu = 0, \quad \lim_{|x| \to \infty} u(x) = 0. \]

Transform leads to

\[-k^2 \hat{u}(k) - i\hat{u}'(k) = 0.\]

Solve by separation of variables: \(d\hat{u}/\hat{u} = ik^2 \, dk \) integrates to

\[\hat{u}(k) = Ce^{ik^3/3}. \]

Inverse transform is

\[u(x) = \frac{C}{2\pi} \int_{-\infty}^{\infty} \exp(i[kx + k^3/3]) \, dk. \]

With the choice \(C = 1 \) get the *Airy function*.
Partial differential equations, example 1

Laplace equation in upper half plane:

\[u_{xx} + u_{yy} = 0, \quad -\infty < x < \infty, \quad y > 0, \]

\[u(x, 0) = g(x), \quad \lim_{y \to \infty} u(x, y) = 0. \]
Laplace equation in upper half plane:

\[u_{xx} + u_{yy} = 0, \quad -\infty < x < \infty, \quad y > 0, \]
\[u(x, 0) = g(x), \quad \lim_{y \to \infty} u(x, y) = 0. \]

Transform in the \(x \) variable only:

\[U(k, y) = \int_{-\infty}^{\infty} e^{-ikx} u(x, y) \, dx. \]

Note \(y \)-derivatives commute with the Fourier transform in \(x \).

\[-k^2 U + U_{yy} = 0, \quad U(k, 0) = \hat{g}(k), \quad \lim_{y \to \infty} U(k, y) = 0. \]
Now solve ODEs

\[-k^2 U + U_{yy} = 0, \quad U(k, 0) = \hat{g}(k), \quad \lim_{y \to \infty} U(k, y) = 0. \]
Now solve ODEs

\[-k^2 U + U_{yy} = 0, \quad U(k, 0) = \hat{g}(k), \quad \lim_{y \to \infty} U(k, y) = 0.\]

General solution is \(U = c_1(k)e^{+|k|y} + c_2(k)e^{-|k|y}.\) Using boundary conditions,

\[U(k, y) = \hat{g}(k)e^{-|k|y}.\]
Now solve ODEs

\[-k^2 U + U_{yy} = 0, \quad U(k, 0) = \hat{g}(k), \quad \lim_{y \to \infty} U(k, y) = 0.\]

General solution is \(U = c_1(k)e^{+|k|y} + c_2(k)e^{-|k|y}\). Using boundary conditions,

\[U(k, y) = \hat{g}(k)e^{-|k|y}.\]

Inverse transform using convolution and exponential formulas

\[u(x, y) = g(x) \ast \left(e^{-|k|y} \right) \vee = g(x) \ast \left(\frac{y}{\pi(x^2 + y^2)} \right)\]

\[= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{yg(x_0)}{(x - x_0)^2 + y^2} dx_0.\]

Same formula as obtained by Green’s function methods!
“Transport equation"

\[u_t + cu_x = 0, \quad -\infty < x < \infty, \quad t > 0, \quad u(x,0) = f(x). \]
Partial differential equations, example 2

“Transport equation"

\[u_t + cu_x = 0, \quad -\infty < x < \infty, \quad t > 0, \quad u(x, 0) = f(x). \]

As before,

\[U(k, t) = \int_{-\infty}^{\infty} e^{-ikx} u(x, t) dx. \]

therefore transform in \(x \) variables is

\[U_t + ikcU = 0, \quad U(k, 0) = \hat{f}(k). \]
“Transport equation”

\[u_t + cu_x = 0, \quad -\infty < x < \infty, \quad t > 0, \quad u(x, 0) = f(x). \]

As before,

\[U(k, t) = \int_{-\infty}^{\infty} e^{-ikx} u(x, t) \, dx. \]

therefore transform in \(x \) variables is

\[U_t + ikcU = 0, \quad U(k, 0) = \hat{f}(k). \]

Simple differential equation with solution

\[U(k, t) = e^{-ict\hat{f}(k)}. \]
“Transport equation"

\[u_t + cu_x = 0, \quad -\infty < x < \infty, \quad t > 0, \quad u(x, 0) = f(x). \]

As before,

\[U(k, t) = \int_{-\infty}^{\infty} e^{-ikx} u(x, t) dx. \]

therefore transform in \(x \) variables is

\[U_t + ikcU = 0, \quad U(k, 0) = \hat{f}(k). \]

Simple differential equation with solution

\[U(k, t) = e^{-ickt}\hat{f}(k). \]

Use translation formula \(f(x - a) = e^{-iat}\hat{f}(k) \) with \(a = ct \),

\[u(x, t) = f(x - ct). \]
Consider the wave equation on the real line

\[u_{tt} = u_{xx}, \quad -\infty < x < \infty, \quad t > 0, \quad u(x, 0) = f(x), \quad u_t(x, 0) = g(x). \]
Consider the wave equation on the real line

\[u_{tt} = u_{xx}, \quad -\infty < x < \infty, \quad t > 0, \quad u(x, 0) = f(x), \quad u_t(x, 0) = g(x). \]

Transforming as before,

\[U_{tt} + k^2 U = 0, \quad U(k, 0) = \hat{f}(k), \quad U_t(k, 0) = \hat{g}(k). \]
Consider the wave equation on the real line

\[u_{tt} = u_{xx}, \quad -\infty < x < \infty, \quad t > 0, \quad u(x, 0) = f(x), \quad u_t(x, 0) = g(x). \]

Transforming as before,

\[U_{tt} + k^2 U = 0, \quad U(k, 0) = \hat{f}(k), \quad U_t(k, 0) = \hat{g}(k). \]

Solution of initial value problem

\[U(k, t) = \hat{f}(k) \cos(kt) + \frac{\hat{g}(k)}{k} \sin(kt). \]

Need inverse transform formulas for \(\cos, \sin \) and \(\hat{f}/k \).
For \cos, \sin, write in terms of complex exponentials:

$$[\cos(ak)]^\vee = \frac{1}{2}[e^{iak} + e^{-iak}]^\vee = \frac{1}{2}[\delta(x + a) + \delta(x - a)],$$

$$[\sin(ak)]^\vee = -\frac{i}{2}[e^{iak} - e^{-iak}]^\vee = -\frac{i}{2}[\delta(x + a) - \delta(x - a)].$$
For \(\cos, \sin\), write in terms of complex exponentials:

\[
\cos(ak)^\vee = \frac{1}{2}[e^{iak} + e^{-iak}]^\vee = \frac{1}{2} [\delta(x + a) + \delta(x - a)],
\]

\[
\sin(ak)^\vee = -\frac{i}{2}[e^{iak} - e^{-iak}]^\vee = -\frac{i}{2} [\delta(x + a) - \delta(x - a)].
\]

If \(f(x)\) is integrable, int. by parts gives

\[
\left[\int_{-\infty}^{x} f(x')dx'\right]^\wedge = \int_{-\infty}^{\infty} e^{-ikx} \int_{-\infty}^{x} f(x')dx' dx = \frac{1}{ik} \int_{-\infty}^{\infty} e^{-ikx} f(x)dx.
\]
For \(\cos, \sin \), write in terms of complex exponentials:

\[
[\cos(ak)]^\vee = \frac{1}{2} [e^{iak} + e^{-iak}]^\vee = \frac{1}{2} [\delta(x + a) + \delta(x - a)],
\]

\[
[sin(ak)]^\vee = -\frac{i}{2} [e^{iak} - e^{-iak}]^\vee = -\frac{i}{2} [\delta(x + a) - \delta(x - a)].
\]

If \(f(x) \) is integrable, int. by parts gives

\[
\left[\int_{-\infty}^{x} f(x') dx' \right]^\wedge = \int_{-\infty}^{\infty} e^{-ikx} \int_{-\infty}^{x} f(x') dx' dx = \frac{1}{ik} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx.
\]

Therefore

\[
\left[\frac{\hat{f}(k)}{ik} \right]^\vee = \int_{-\infty}^{x} f(x') dx'.
\]

That is, integration in \(x \) gives a factor of \(1/(ik) \) in the transform.
Now for inverse transform of

\[U(k, t) = \hat{f}(k) \cos(kt) + \frac{\hat{g}(k)}{k} \sin(kt). \]
Now for inverse transform of

\[U(k, t) = \hat{f}(k) \cos(kt) + \frac{\hat{g}(k)}{k} \sin(kt). \]

First term:

\[
\left[\hat{f}(k) \cos(kt) \right] \hat{\gamma} = f(x) \ast \frac{1}{2} [\delta(x + t) + \delta(x - t)]
\]

\[
= \frac{1}{2} \int_{-\infty}^{\infty} f(x - y)[\delta(y + t) + \delta(y - t)]dy = \frac{1}{2}[f(x - t) + f(x + t)].
\]
Now for inverse transform of

\[U(k, t) = \hat{f}(k) \cos(kt) + \frac{\hat{g}(k)}{k} \sin(kt). \]

First term:

\[\left[\hat{f}(k) \cos(kt) \right]^{\neg} = f(x) \ast \frac{1}{2} \left[\delta(x + t) + \delta(x - t) \right] \]

\[= \frac{1}{2} \int_{-\infty}^{\infty} f(x - y) \left[\delta(y + t) + \delta(y - t) \right] dy = \frac{1}{2} [f(x - t) + f(x + t)]. \]

Second term:

\[\left[\frac{\hat{g}(k) \sin(kt)}{k} \right]^{\neg} = i \int_{-\infty}^{\infty} \left[\frac{\hat{g}(k) \sin(kt)}{k} \right]^{\neg} (x') dx' \]

\[= \frac{1}{2} \int_{-\infty}^{\infty} g(x') \ast \left[\delta(x' + t) - \delta(x' - t) \right] dx' \]

\[= \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x' - y) \left[\delta(y + t) - \delta(y - t) \right] dy dx' \]

\[= \frac{1}{2} \int_{-\infty}^{\infty} g(x' + t) - g(x' - t) dx'. \]
Finally, can change variables $\xi = x' + t$ or $\xi = x' - t$

$$\int_{-\infty}^{x} g(x' + t) - g(x' - t)dx' = \int_{-\infty}^{x+t} g(\xi)d\xi - \int_{-\infty}^{x-t} g(\xi)d\xi$$

$$= \int_{x-t}^{x+t} g(\xi)d\xi.$$
Finally, can change variables $\xi = x' + t$ or $\xi = x' - t$

$$\int_{-\infty}^{x} g(x' + t) - g(x' - t)dx' = \int_{-\infty}^{x+t} g(\xi)d\xi - \int_{-\infty}^{x-t} g(\xi)d\xi$$

$$= \int_{x-t}^{x+t} g(\xi)d\xi.$$

All together get *d’Alembert’s* formula

$$u(x, t) = \frac{1}{2}[f(x - t) + f(x + t)] + \frac{1}{2} \int_{x-t}^{x+t} g(\xi)d\xi.$$
Consider generic, linear, time-dependent equation

\[u_t(x, t) = \mathcal{L}u(x, t), \quad -\infty < x < \infty, \quad u(x, 0) = f(x), \quad \lim_{|x| \to \infty} u(x, t) = 0, \]

where \(\mathcal{L} \) is some operator (e.g. \(\mathcal{L} = \partial^2 / \partial x^2 \)).
Consider generic, linear, time-dependent equation

$$u_t(x, t) = \mathcal{L} u(x, t), \quad -\infty < x < \infty, \quad u(x, 0) = f(x), \quad \lim_{|x| \to \infty} u(x, t) = 0,$$

where \mathcal{L} is some operator (e.g. $\mathcal{L} = \partial^2/\partial x^2$).

The **fundamental solution** $S(x, x_0, t)$ is a type of Green’s function, solving

$$S_t = \mathcal{L}_x S, \quad -\infty < x < \infty, \quad S(x, x_0, 0) = \delta(x - x_0), \quad \lim_{|x| \to \infty} S(x, x_0, t) = 0.$$
Consider generic, linear, time-dependent equation

\[u_t(x, t) = \mathcal{L}u(x, t), \quad -\infty < x < \infty, \quad u(x, 0) = f(x), \quad \lim_{|x| \to \infty} u(x, t) = 0, \]

where \(\mathcal{L} \) is some operator (e.g. \(\mathcal{L} = \partial^2 / \partial x^2 \)).

The fundamental solution \(S(x, x_0, t) \) is a type of Green’s function, solving

\[S_t = \mathcal{L}_x S, \quad -\infty < x < \infty, \quad S(x, x_0, 0) = \delta(x-x_0), \quad \lim_{|x| \to \infty} S(x, x_0, t) = 0. \]

Initial condition means \(S \) limits to a \(\delta \)-function as \(t \to 0 \):

\[\lim_{t \to 0} \int_{-\infty}^{\infty} S(x, x_0, t)\phi(x)dx = \int_{-\infty}^{\infty} \delta(x - x_0)\phi(x)dx = \phi(x_0), \]
Claim that the initial value problem has solution

\[u(x, t) = \int_{-\infty}^{\infty} S(x, x_0, t)f(x_0)dx_0, \]
Claim that the initial value problem has solution

\[u(x, t) = \int_{-\infty}^{\infty} S(x, x_0, t)f(x_0)dx_0, \]

Check:

\[u(x, 0) = \lim_{t \to 0} \int_{-\infty}^{\infty} S(x, x_0, t)f(x_0)dx_0 = \int_{-\infty}^{\infty} \delta(x-x_0)f(x_0)dx_0 = f(x). \]
Claim that the initial value problem has solution

\[u(x, t) = \int_{-\infty}^{\infty} S(x, x_0, t)f(x_0)dx_0, \]

Check:

\[u(x, 0) = \lim_{t \to 0} \int_{-\infty}^{\infty} S(x, x_0, t)f(x_0)dx_0 = \int_{-\infty}^{\infty} \delta(x-x_0)f(x_0)dx_0 = f(x). \]

Plugging \(u \) into the equation and moving time derivative inside the integral

\[u_t = \int_{-\infty}^{\infty} S_t(x, x_0, t)f(x_0)dx_0 = \int_{-\infty}^{\infty} \mathcal{L}_x S(x, x_0, t)f(x_0)dx_0. \]
Claim that the initial value problem has solution

\[u(x, t) = \int_{-\infty}^{\infty} S(x, x_0, t)f(x_0)\,dx_0, \]

Check:

\[u(x, 0) = \lim_{t \to 0} \int_{-\infty}^{\infty} S(x, x_0, t)f(x_0)\,dx_0 = \int_{-\infty}^{\infty} \delta(x-x_0)f(x_0)\,dx_0 = f(x). \]

Plugging \(u \) into the equation and moving time derivative inside the integral

\[u_t = \int_{-\infty}^{\infty} S_t(x, x_0, t)f(x_0)\,dx_0 = \int_{-\infty}^{\infty} \mathcal{L}_x S(x, x_0, t)f(x_0)\,dx_0. \]

Now move operator outside integral

\[u_t = \mathcal{L}_x \int_{-\infty}^{\infty} S(x, x_0, t)f(x_0)\,dx_0 = \mathcal{L}_x u. \]
For diffusion equation on the real line, S solves

$$S_t = DS_{xx}, \quad -\infty < x < \infty, \quad S(x, x_0, 0) = \delta(x - x_0), \quad \lim_{|x| \to \infty} S(x, x_0, t) = 0.$$
For diffusion equation on the real line, S solves

$$S_t = DS_{xx}, \quad -\infty < x < \infty, \quad S(x, x_0, 0) = \delta(x-x_0), \quad \lim_{|x| \to \infty} S(x, x_0, t) = 0.$$

Take Fourier transform in x by letting

$$\hat{S}(k, x_0, t) = \int_{-\infty}^{\infty} S(x, x_0, t)e^{-ikx} \, dx,$$

giving

$$\hat{S}(k, x_0, t) = e^{-ikx_0} - Dk^2 t.$$
For diffusion equation on the real line, S solves

$$S_t = DS_{xx}, \ -\infty < x < \infty, \ S(x, x_0, 0) = \delta(x-x_0), \ \lim_{|x|\to\infty} S(x, x_0, t) = 0.$$

Take Fourier transform in x by letting

$$\hat{S}(k, x_0, t) = \int_{-\infty}^{\infty} S(x, x_0, t)e^{-ikx} \, dx,$$
giving

$$\hat{S}_t = -Dk^2 \hat{S}, \ \hat{S}(k, 0) = e^{-ix_0k}.$$
For diffusion equation on the real line, S solves

$$S_t = DS_{xx}, \quad -\infty < x < \infty, \quad S(x, x_0, 0) = \delta(x-x_0), \quad \lim_{|x| \to \infty} S(x, x_0, t) = 0.$$

Take Fourier transform in x by letting

$$\hat{S}(k, x_0, t) = \int_{-\infty}^{\infty} S(x, x_0, t) e^{-ikx} \, dx,$$

giving

$$\hat{S}_t = -Dk^2 \hat{S}, \quad \hat{S}(k, 0) = e^{-ix_0k}.$$

Solution to this ODE

$$\hat{S} = e^{-ix_0k-Dk^2t}.$$
Inverse transform of

\[\hat{S} = e^{-ix_0k-Dk^2t}. \]

uses translation, dilation, and Gaussian formulas:

\[
S(x, x_0, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-(x-x_0)^2/(4Dt)}.
\]
Inverse transform of
\[\hat{S} = e^{-ix_0 k - D k^2 t}. \]
uses translation, dilation, and Gaussian formulas:
\[S(x, x_0, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-(x-x_0)^2/(4Dt)}. \]
It follows that the solution to \(u_t = Du_{xx} \) and \(u(x, 0) = f(x) \) is
\[u(x, t) = \int_{-\infty}^{\infty} \frac{f(x_0)}{\sqrt{4\pi Dt}} e^{-(x-x_0)^2/(4Dt)} dx_0. \]
Fundamental solutions using the Fourier transform, example 2

Linearized Korteweg - de Vries (KdV) equation:

\[u_t = -u_{xxx}, \quad u(x, 0) = f(x), \quad \lim_{|x| \to \infty} u(x, t) = 0. \]
Linearized Korteweg - de Vries (KdV) equation:

$$u_t = -u_{xxx}, \quad u(x, 0) = f(x), \quad \lim_{|x| \to \infty} u(x, t) = 0.$$

Fundamental solution solves

$$S_t = -S_{xxx}, \quad S(x, x_0, 0) = \delta(x - x_0), \quad \lim_{|x| \to \infty} S(x, x_0, t) = 0.$$
Linearized Korteweg - de Vries (KdV) equation:

\[u_t = -u_{xxx}, \quad u(x, 0) = f(x), \quad \lim_{|x| \to \infty} u(x, t) = 0. \]

Fundamental solution solves

\[S_t = -S_{xxx}, \quad S(x, x_0, 0) = \delta(x - x_0), \quad \lim_{|x| \to \infty} S(x, x_0, t) = 0. \]

Transforming

\[\hat{S}_t = ik^3 \hat{S}, \quad \hat{S}(k, 0) = e^{-ix_0k}, \]

whose solution is \(\hat{S}(k, x_0, t) = e^{-ix_0k} e^{ik^3t} \).
Linearized Korteweg - de Vries (KdV) equation:

\[u_t = -u_{xxx}, \quad u(x, 0) = f(x), \quad \lim_{|x| \to \infty} u(x, t) = 0. \]

Fundamental solution solves

\[S_t = -S_{xxx}, \quad S(x, x_0, 0) = \delta(x - x_0), \quad \lim_{|x| \to \infty} S(x, x_0, t) = 0. \]

Transforming

\[\hat{S}_t = ik^3 \hat{S}, \quad \hat{S}(k, 0) = e^{-ix_0 k}, \]

whose solution is \(\hat{S}(k, x_0, t) = e^{-ix_0 k} e^{ik^3 t} \).

Recall transform of Airy function \(\text{Ai}(x) \) is \(e^{ik^3/3} \), therefore

\[S(x, x_0, t) = \left[e^{-ix_0 k} e^{ik^3 t} \right]^\vee = \left[e^{i(k/a)^3/3} \right]^\vee (x - x_0) \]

\[= a \text{Ai}\left(a(x - x_0)\right), \quad a \equiv (3t)^{-1/3}. \]
Fundamental solutions using the Fourier transform, example 2

Linearized Korteweg - de Vries (KdV) equation:

\[u_t = -u_{xxx}, \quad u(x, 0) = f(x), \quad \lim_{|x| \to \infty} u(x, t) = 0. \]

Fundamental solution solves

\[S_t = -S_{xxx}, \quad S(x, x_0, 0) = \delta(x - x_0), \quad \lim_{|x| \to \infty} S(x, x_0, t) = 0. \]

Transforming

\[\hat{S}_t = ik^3 \hat{S}, \quad \hat{S}(k, 0) = e^{-ix_0 k}, \]

whose solution is \(\hat{S}(k, x_0, t) = e^{-ix_0 k} e^{ik^3 t} \).

Recall transform of Airy function \(\text{Ai}(x) \) is \(e^{ik^3/3} \), therefore

\[S(x, x_0, t) = \left[e^{-ix_0 k} e^{ik^3 t} \right]^\vee = \left[e^{i(k/a)^3/3} \right]^\vee (x - x_0) \]

\[= a \text{Ai} \left(a(x - x_0) \right), \quad a \equiv (3t)^{-1/3}. \]

Solution to original equation:

\[u(x, t) = \frac{1}{(3t)^{1/3}} \int_{-\infty}^{\infty} \text{Ai} \left(\frac{x - x_0}{(3t)^{1/3}} \right) f(x_0) dx_0. \]
For solutions on half-line $x > 0$, can’t use Fourier transform directly.
For solutions on half-line $x > 0$, can’t use Fourier transform directly.

Fundamental solution must satisfy boundary condition at $x = 0$.
The method of images for fundamental solutions

- For solutions on half-line $x > 0$, can’t use Fourier transform directly.
- Fundamental solution must satisfy boundary condition at $x = 0$
- Inspiration: method of images. If $S_\infty(x; x_0, t)$ is the fundamental solution for the whole line, then:
 - Odd reflection $S = S_\infty(x; x_0, t) - S_\infty(x; -x_0, t)$ gives $S(0, x_0, t) = 0$.
 - Even reflection $S = S_\infty(x; x_0, t) + S_\infty(x; -x_0, t)$ gives $S_x(0, x_0, t) = 0$.

The method of images for fundamental solutions, example

Consider diffusion equation on half line:

\[u_t = Du_{xx}, \quad u(x, 0) = f(x), \quad u(0, t) = 0, \quad \lim_{x \to \infty} u(x, t) = 0. \]
Consider diffusion equation on half line:

\[u_t = Du_{xx}, \quad u(x, 0) = f(x), \quad u(0, t) = 0, \quad \lim_{x \to \infty} u(x, t) = 0. \]

Use odd reflection of fundamental solution for whole line

\[S_\infty = e^{-(x-x_0)^2/(4Dt)} / \sqrt{4\pi Dt}, \]

\[S(x, x_0, t) = \frac{1}{\sqrt{4\pi Dt}} \left[e^{-(x-x_0)^2/(4Dt)} - e^{-(x+x_0)^2/(4Dt)} \right] \]
Consider diffusion equation on half line:

\[u_t = Du_{xx}, \quad u(x, 0) = f(x), \quad u(0, t) = 0, \quad \lim_{x \to \infty} u(x, t) = 0. \]

Use odd reflection of fundamental solution for whole line
\[S_\infty = e^{-(x-x_0)^2/(4Dt)}/\sqrt{4\pi Dt}, \]
\[S(x, x_0, t) = \frac{1}{\sqrt{4\pi Dt}} \left[e^{-(x-x_0)^2/(4Dt)} - e^{-(x+x_0)^2/(4Dt)} \right] \]

Therefore the solution \(u \) is just
\[u(x, t) = \int_0^\infty \frac{f(x_0)}{\sqrt{4\pi Dt}} \left[e^{-(x-x_0)^2/(4Dt)} - e^{-(x+x_0)^2/(4Dt)} \right] dx_0. \]
The age of the earth

Lord Kelvin: simple model of temperature of earth

\[u(x, t) \] at depth \(x \) and time \(t \)

\[u_t = Du_{xx}, \quad x > 0, \quad u(x, 0) = U_0, \quad u(0, t) = 0. \]

Scale chosen so \(u = 0 \) on surface; assumes initially constant temperature \((U_0) \) throughout the molten earth.
Lord Kelvin: simple model of temperature of earth $u(x, t)$ at depth x and time t

$$u_t = Du_{xx}, \ x > 0, \ u(x, 0) = U_0, \ u(0, t) = 0.$$

Scale chosen so $u = 0$ on surface; assumes initially constant temperature (U_0) throughout the molten earth.

We found solution

$$u(x, t) = \int_0^\infty \frac{f(x_0)}{\sqrt{4\pi Dt}} \left[e^{-(x-x_0)^2/(4Dt)} - e^{-(x+x_0)^2/(4Dt)} \right] dx_0.$$

Temperature gradient μ at surface is therefore

$$\mu = u_x(0, t) = U_0 \sqrt{\frac{1}{\pi Dt}} \int_0^\infty x_0 e^{-x_0^2/(4Dt)} dx_0 = U_0 \sqrt{\frac{1}{\pi Dt}}.$$

This relates the age of earth t to quantities we can estimate $U_0 \approx$ melting temp. of iron $\approx 10^4$ C, $D \approx 10^{-3}$ m2/s, $\mu \approx 10^{-2}$ C/m, which gives $t \approx 3 \times 10^7$ years !!?
The age of the earth

Lord Kelvin: simple model of temperature of earth

\[u(x, t) \text{ at depth } x \text{ and time } t \]

\[u_t = Du_{xx}, \quad x > 0, \quad u(x, 0) = U_0, \quad u(0, t) = 0. \]

Scale chosen so \(u = 0 \) on surface; assumes initially constant temperature (\(U_0 \)) throughout the molten earth.

We found solution

\[
 u(x, t) = \int_0^\infty \frac{f(x_0)}{\sqrt{4\pi Dt}} \left[e^{-(x-x_0)^2/(4Dt)} - e^{-(x+x_0)^2/(4Dt)} \right] dx_0.
\]

Temperature gradient \(\mu \) at surface is therefore

\[
 \mu = u_x(0, t) = \frac{U_0}{\sqrt{4\pi Dt}} \frac{1}{Dt} \int_0^\infty x_0 e^{-x_0^2/(4Dt)} dx_0 = \frac{U_0}{\sqrt{\pi Dt}}.
\]

This relates the age of earth \(t \) to quantities we can estimate

\(U_0 \approx \) melting temp. of iron \(\approx 10^4 \) C,

\(D \approx 10^{-3} \) m\(^2\)/s,

\(\mu \approx 10^{-2} \) C/m,

which gives \(t \approx 3 \times 10^7 \) years !!?
The age of the earth

Lord Kelvin: simple model of temperature of earth \(u(x, t) \) at depth \(x \) and time \(t \)

\[
 u_t = Du_{xx}, \ x > 0, \quad u(x, 0) = U_0, \ u(0, t) = 0.
\]

Scale chosen so \(u = 0 \) on surface; assumes initially constant temperature \((U_0)\) throughout the molten earth.

We found solution

\[
 u(x, t) = \int_0^\infty \frac{f(x_0)}{\sqrt{4\pi Dt}} \left[e^{-(x-x_0)^2/(4Dt)} - e^{-(x+x_0)^2/(4Dt)} \right] dx_0.
\]

Temperature gradient \(\mu \) at surface is therefore

\[
 \mu = u_x(0, t) = \frac{U_0}{\sqrt{4\pi Dt}} \frac{1}{Dt} \int_0^\infty x_0 e^{-x_0^2/(4Dt)} dx_0 = \frac{U_0}{\sqrt{\pi Dt}}.
\]

This relates the age of earth \(t \) to quantities we can estimate

\[
 U_0 \approx \text{melting temp. of iron} \approx 10^4 \, \text{C}, \quad D \approx 10^{-3} \, \text{m}^2/\text{s}, \quad \mu \approx 10^{-2} \, \text{C/m},
\]
The age of the earth

Lord Kelvin: simple model of temperature of earth $u(x, t)$ at depth x and time t

$$u_t = Du_{xx}, \quad x > 0, \quad u(x, 0) = U_0, \quad u(0, t) = 0.$$

Scale chosen so $u = 0$ on surface; assumes initially constant temperature (U_0) throughout the molten earth.

We found solution

$$u(x, t) = \int_0^\infty f(x_0) \frac{e^{-(x-x_0)^2/(4Dt)} - e^{-(x+x_0)^2/(4Dt)}}{\sqrt{4\pi Dt}} \, dx_0.$$

Temperature gradient μ at surface is therefore

$$\mu = u_x(0, t) = \frac{U_0}{\sqrt{4\pi Dt}} \frac{1}{Dt} \int_0^\infty x_0 e^{-x_0^2/(4Dt)} \, dx_0 = \frac{U_0}{\sqrt{\pi Dt}}.$$

This relates the age of earth t to quantities we can estimate

$U_0 \approx$ melting temp. of iron $\approx 10^4 \, C, \quad D \approx 10^{-3} \, m^2/s, \quad \mu \approx 10^{-2} \, C/m,$

which gives $t \approx 3 \times 10^7$ years !??