Consider

\[u_t = \Delta u \quad (\text{Diffusion}) \]
\[u_{tt} = \Delta u \quad (\text{Wave}) \]
\[-u_{zz} = \Delta u \quad (\text{Laplace}) \]

where \(\Delta u = u_{xx} + u_{yy} \)
Consider

\[u_t = \Delta u \quad (\text{Diffusion}) \]
\[u_{tt} = \Delta u \quad (\text{Wave}) \]
\[-u_{zz} = \Delta u \quad (\text{Laplace}) \]

where \(\Delta u = u_{xx} + u_{yy} \)

Domain: \((x, y) \in D\), where \(D\) is open set with smooth boundary \(t > 0\) (diffusion/wave) or \(a < z < b\) (Laplace).
Consider

\[u_t = \Delta u \quad (\text{Diffusion}) \]
\[u_{tt} = \Delta u \quad (\text{Wave}) \]
\[-u_{zz} = \Delta u \quad (\text{Laplace}) \]

where \(\Delta u = u_{xx} + u_{yy} \)

Domain: \((x, y) \in D \), where \(D \) is open set with smooth boundary \(t > 0 \) (diffusion/wave) or \(a < z < b \) (Laplace).

Will need homogeneous boundary conditions such as

\[u(x, y, \cdot) = 0, \quad (x, y) \in \partial D \quad (\text{Dirichlet}) \]
\[\nabla u(x, y, \cdot) \cdot \hat{n} = 0, \quad (x, y) \in \partial D \quad (\text{Neumann}) \]

On the other hand, conditions at \(t = 0 \) or \(z = a, b \) are arbitrary.
Separating variables

Look for solutions of form \(u = T(t)v(x, y) \) or \(u = Z(z)v(x, y) \)

\[
\frac{T'}{T} = \frac{\Delta v}{v} = -\lambda \quad (\text{Diffusion})
\]

\[
\frac{T''}{T} = \frac{\Delta v}{v} = -\lambda \quad (\text{Wave})
\]

\[
-\frac{Z''}{Z} = \frac{\Delta v}{v} = -\lambda \quad (\text{Laplace})
\]
Separating variables

Look for solutions of form \(u = T(t)v(x, y) \) or \(u = Z(z)v(x, y) \)

\[
\frac{T'}{T} = \frac{\Delta v}{v} = -\lambda \quad (\text{Diffusion})
\]

\[
\frac{T''}{T} = \frac{\Delta v}{v} = -\lambda \quad (\text{Wave})
\]

\[
-\frac{Z''}{Z} = \frac{\Delta v}{v} = -\lambda \quad (\text{Laplace})
\]

Resulting multidimensional eigenvalue problem: find \(v : D \to \mathbb{R} \)

\[
\Delta v + \lambda v = 0, \quad \text{plus boundary conditions.}
\]
Separating variables

Look for solutions of form \(u = T(t)v(x,y) \) or \(u = Z(z)v(x,y) \)

\[
\frac{T'}{T} = \frac{\Delta v}{v} = -\lambda \quad (\text{Diffusion})
\]

\[
\frac{T''}{T} = \frac{\Delta v}{v} = -\lambda \quad (\text{Wave})
\]

\[
-\frac{Z''}{Z} = \frac{\Delta v}{v} = -\lambda \quad (\text{Laplace})
\]

Resulting multidimensional eigenvalue problem: find \(v : D \rightarrow \mathbb{R} \)

\[
\Delta v + \lambda v = 0, \quad \text{plus boundary conditions.}
\]

For time being, suppose we already know the eigenfunctions \(v_n(x,y) \) and corresponding eigenvalues \(\lambda_n, n = 1, 2, 3, \ldots \).
Separating variables

Look for solutions of form \(u = T(t)v(x,y) \) or \(u = Z(z)v(x,y) \)

\[
\frac{T'}{T} = \frac{\Delta v}{v} = -\lambda \quad (\text{Diffusion})
\]

\[
\frac{T''}{T} = \frac{\Delta v}{v} = -\lambda \quad (\text{Wave})
\]

\[
-\frac{Z''}{Z} = \frac{\Delta v}{v} = -\lambda \quad (\text{Laplace})
\]

Resulting multidimensional eigenvalue problem: find \(v : D \rightarrow \mathbb{R} \)

\[
\Delta v + \lambda v = 0, \quad \text{plus boundary conditions.}
\]

For time being, suppose we already know the eigenfunctions \(v_n(x,y) \) and corresponding eigenvalues \(\lambda_n, n = 1, 2, 3, \ldots \)

With suitable boundary conditions

- eigenvalues are real, non-negative
- Eigenfunctions are orthogonal w.r.t. inner product \(\langle u, v \rangle = \int_D uv \, dx \).
Solution in terms of eigenfunctions and eigenvalues

Solving the ODEs for the T and Z variables and taking a superposition, we arrive at the general solutions

$$u(x, y, t) = \sum_{n=1}^{\infty} A_n \exp(-\lambda_n t)v_n(x, y) \quad (Diffusion)$$

$$u(x, y, t) = \sum_{n=1}^{\infty} [A_n \cos(\sqrt{\lambda_n} t) + B_n \sin(\sqrt{\lambda_n} t)]v_n(x, y) \quad (Wave)$$

$$u(x, y, z) = \sum_{n=1}^{\infty} [A_n \exp(\sqrt{\lambda_n} z) + B_n \exp(-\sqrt{\lambda_n} z)]v_n(x, y) \quad (Laplace)$$
Solution in terms of eigenfunctions and eigenvalues

Solving the ODEs for the T and Z variables and taking a superposition, we arrive at the general solutions

\[u(x, y, t) = \sum_{n=1}^{\infty} A_n \exp(-\lambda_n t) v_n(x, y) \quad (\text{Diffusion}) \]

\[u(x, y, t) = \sum_{n=1}^{\infty} [A_n \cos(\sqrt{\lambda_n} t) + B_n \sin(\sqrt{\lambda_n} t)] v_n(x, y) \quad (\text{Wave}) \]

\[u(x, y, z) = \sum_{n=1}^{\infty} [A_n \exp(\sqrt{\lambda_n} z) + B_n \exp(-\sqrt{\lambda_n} z)] v_n(x, y) \quad (\text{Laplace}) \]

- Main issue: solve the eigenvalue problem.
- Difficult to write complete solution for arbitrary domain D.

Solution in terms of eigenfunctions and eigenvalues

Solving the ODEs for the T and Z variables and taking a superposition, we arrive at the general solutions

\[
\begin{align*}
 u(x, y, t) &= \sum_{n=1}^{\infty} A_n \exp(-\lambda_n t)v_n(x, y) \quad (\text{Diffusion}) \\
 u(x, y, t) &= \sum_{n=1}^{\infty} [A_n \cos(\sqrt{\lambda_n} t) + B_n \sin(\sqrt{\lambda_n} t)]v_n(x, y) \quad (\text{Wave}) \\
 u(x, y, z) &= \sum_{n=1}^{\infty} [A_n \exp(\sqrt{\lambda_n} z) + B_n \exp(-\sqrt{\lambda_n} z)]v_n(x, y) \quad (\text{Laplace})
\end{align*}
\]

- Main issue: solve the eigenvalue problem.
- Difficult to write complete solution for arbitrary domain D.
- Three tractable cases are where D is a rectangle, a disk, and the surface of a sphere.
Let \(u, v : D \to \mathbb{R} \) be smooth functions. Apply the divergence theorem to \(u \nabla v \),

\[
\int_D \nabla \cdot (u \nabla v) \, dx = \int_{\partial D} u \nabla v \cdot \hat{n} \, dx.
\]
Let $u, v : D \to \mathbb{R}$ be smooth functions. Apply the divergence theorem to $u \nabla v$,

$$\int_D \nabla \cdot (u \nabla v) \, dx = \int_{\partial D} u \nabla v \cdot \hat{n} \, d\mathbf{x}.$$

Use $\nabla \cdot (u \nabla v) = \nabla u \cdot \nabla v + u \Delta v$,

$$\int_D u \Delta v \, d\mathbf{x} = - \int_D \nabla u \cdot \nabla v + \int_{\partial D} u \nabla v \cdot \hat{n} \, d\mathbf{x}.$$

gives Green’s identity.
Green’s identity

Let \(u, v : D \to \mathbb{R} \) be smooth functions. Apply the divergence theorem to \(u \nabla v \),

\[
\int_D \nabla \cdot (u \nabla v) \, dx = \int_{\partial D} u \nabla v \cdot \hat{n} \, dx.
\]

Use \(\nabla \cdot (u \nabla v) = \nabla u \cdot \nabla v + u \Delta v \),

\[
\int_D u \Delta v \, dx = - \int_D \nabla u \cdot \nabla v + \int_{\partial D} u \nabla v \cdot \hat{n} \, dx.
\]

gives Green’s identity.

Remark: just like integration by parts in higher dimensions.
Consider space of smooth functions with domain D, satisfying either Dirichlet or Neumann homogeneous boundary conditions. Use inner product

$$\langle u, v \rangle = \int_D uv \, d\mathbf{x}.$$
Consider space of smooth functions with domain D, satisfying either Dirichlet or Neumann homogeneous boundary conditions. Use inner product

$$\langle u, v \rangle = \int_D uv \, dx.$$

To compute adjoint of Δ, using Green’s identity twice:

$$\langle \Delta u, v \rangle = \int_D v \Delta u \, dx = -\int_D \nabla v \cdot \nabla u \, dx + \int_{\partial D} v \nabla u \cdot \hat{n} \, dx =$$

$$= \int_D u \Delta v \, dx - \int_{\partial D} u \nabla v \cdot \hat{n} \, dx = \langle u, \Delta v \rangle.$$

The integrals on the boundary ∂D vanish because of the boundary conditions. It follows Laplacian is self-adjoint.
Consider space of smooth functions with domain D, satisfying either Dirichlet or Neumann homogeneous boundary conditions. Use inner product
\[\langle u, v \rangle = \int_D uv \, dx. \]

To compute adjoint of Δ, using Green's identity twice:
\[
\langle \Delta u, v \rangle = \int_D v \Delta u \, dx = -\int_D \nabla v \cdot \nabla u \, dx + \int_{\partial D} v \nabla u \cdot \hat{n} \, dx = \\
= \int_D u \Delta v \, dx - \int_{\partial D} u \nabla v \cdot \hat{n} \, dx = \langle u, \Delta v \rangle.
\]

- The integrals on the boundary ∂D vanish because of the boundary conditions.
- It follows Laplacian is self-adjoint.
Non-negativity of the eigenvalues

Take inner product of an eigenfunction \(v \) with both sides of the eigenvalue equation \(\mathcal{L}v + \lambda v = 0 \), leading to

\[
\lambda = -\frac{\langle \mathcal{L}v, v \rangle}{\langle v, v \rangle}, \quad \text{“Rayleigh quotient”}
\]

Does not determine \(\lambda \), but can be used to estimate it!
Take inner product of an eigenfunction v with both sides of the eigenvalue equation $\mathcal{L}v + \lambda v = 0$, leading to

$$\lambda = -\frac{\langle \mathcal{L}v, v \rangle}{\langle v, v \rangle}, \quad \text{“Rayleigh quotient”}$$

Does not determine λ, but can be used to estimate it!

Specialize to our situation (with homogeneous boundary conditions)

$$\lambda = -\frac{\int_D v \Delta v \, dx}{\int_D v^2 \, dx} = \frac{\int_D |\nabla v|^2 \, dx}{\int_D v^2 \, dx},$$

Expression on the right is non-negative.

$\lambda = 0$ can be zero only with Neumann boundary conditions.
Non-negativity of the eigenvalues

Take inner product of an eigenfunction \(v \) with both sides of the eigenvalue equation \(\mathcal{L}v + \lambda v = 0 \), leading to

\[
\lambda = -\frac{\langle \mathcal{L}v, v \rangle}{\langle v, v \rangle}, \quad \text{“Rayleigh quotient”}
\]

Does not determine \(\lambda \), but can be used to estimate it!

Specialize to our situation (with homogeneous boundary conditions)

\[
\lambda = -\frac{\int_D v \Delta v \, dx}{\int_D v^2 \, dx} = \frac{\int_D |\nabla v|^2 \, dx}{\int_D v^2 \, dx},
\]

- Expression on the right is non-negative.
- \(\lambda = 0 \) can be zero only with Neumann boundary conditions.