Fourier’s coffee cup: model as a disk

\[u_t = D \Delta u, \quad u(a, \theta, t) = u_a, \quad u(r, \theta, 0) = u_0, \]

\(u_a = \) air temperature at boundary, \(u_0 = \) initial coffee temperature
Fourier’s coffee cup: model as a disk

\[u_t = D \Delta u, \quad u(a, \theta, t) = u_a, \quad u(r, \theta, 0) = u_0, \]

\(u_a \) = air temperature at boundary, \(u_0 \) = initial coffee temperature

First, need to get homogeneous boundary condition. Particular solution which solves equation and boundary conditions is constant \(u_p = u_a \).
Fourier’s coffee cup: model as a disk

\[u_t = D \Delta u, \quad u(a, \theta, t) = u_a, \quad u(r, \theta, 0) = u_0, \]

\(u_a = \) air temperature at boundary, \(u_0 = \) initial coffee temperature

First, need to get homogeneous boundary condition. Particular solution which solves equation and boundary conditions is constant \(u_p = u_a \).

Now get problem for \(w = u - u_p \) which we can solve:

\[w_t = D \Delta w, \quad w(a, \theta, t) = 0, \quad w(r, \theta, 0) = u_0 - u_a. \]
Fourier’s coffee cup: model as a disk

\[u_t = D \Delta u, \quad u(a, \theta, t) = u_a, \quad u(r, \theta, 0) = u_0, \]

\(u_a \) = air temperature at boundary, \(u_0 \) = initial coffee temperature

First, need to get homogeneous boundary condition. Particular solution which solves equation and boundary conditions is constant \(u_p = u_a \).

Now get problem for \(w = u - u_p \) which we can solve:

\[w_t = D \Delta w, \quad w(a, \theta, t) = 0, \quad w(r, \theta, 0) = u_0 - u_a. \]

Most general solution to this is just superposition of separated solutions

\[w = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} [A_{nm} \cos(n\theta) + B_{nm} \sin(n\theta)] J_n(\beta_{nm} r / a) e^{-D\beta_{nm}^2 t / a^2} \]
Notice initial condition does not depend on θ, so simplifies to

$$w = \sum_{m=1}^{\infty} A_0 m J_0(\beta_0 m r / a) e^{-D \beta_0^2 m t / a^2}.$$
Notice initial condition does not depend on θ, so simplifies to

\[w = \sum_{m=1}^{\infty} A_0 m J_0(\beta_0 m r / a) e^{-D \beta_0^2 m t / a^2}. \]

Impose initial conditions

\[\sum_{m=1}^{\infty} A_0 m J_0(\beta_0 m r / a) = u_0 - u_a, \]
Notice initial condition does not depend on θ, so simplifies to

$$w = \sum_{m=1}^{\infty} A_0m J_0(\beta_0 m r/a) e^{-D \beta_0^2 m t/a^2}.$$

Impose initial conditions

$$\sum_{m=1}^{\infty} A_0m J_0(\beta_0 m r/a) = u_0 - u_a,$$

Recall $J_0(\beta_0 m r/a)$ are orthogonal (with respect to weighted inner product) for different m, thus

$$A_0m = \frac{\int_0^a J_0(\beta_0 m r/a)(u_0 - u_a)r \, dr}{\int_0^a J_0^2(\beta_0 m r/a)r \, dr}$$
Still too complicated! Only use term with slowest decay ("ground state approximation")

\[w \approx A_{01} J_0(\beta_{01} r/a) e^{-D\beta_{01}^2 t/a^2}. \]

It follows that temperature in center is

\[u(0, t) = u_a + w(0, t) \approx u_a + (u_0 - u_a) e^{-D\beta_{01}^2 t/a^2} \]
Still too complicated! Only use term with slowest decay ("ground state approximation")

\[w \approx A_{01} J_0(\beta_{01} r/a) e^{-D\beta_{01}^2 t/a^2}. \]

It follows that temperature in center is

\[u(0, t) = u_a + w(0, t) \approx u_a + (u_0 - u_a) e^{-D\beta_{01}^2 t/a^2}. \]

For \(a = 3 \text{cm}, D = .001 \text{cm}^2/\text{sec} \), \(\beta_{01} = 2.404 \), exponential decay rate is \(\exp(-t/t_c) \) where \(t_c = D\beta_{01}^2/a^2 \approx 1000 \text{sec}. \)
Example # 2: Fourier’s Doughnut

Problem: find fundamental (smallest) frequency for wave equation

\[u_{tt} = c^2 \Delta u \]

on an annulus \(1 < r < 2 \), subject to boundary conditions

\[u(1, \theta, t) = 0 = u(2, \theta, t). \]
Problem: find fundamental (smallest) frequency for wave equation

\[u_{tt} = c^2 \Delta u \]

on an annulus \(1 < r < 2 \), subject to boundary conditions \(u(1, \theta, t) = 0 = u(2, \theta, t) \).

Recall separated solutions \(u = T(t)v(r, \theta) \) solve \(T'' = -c^2 \lambda T \) and \(\Delta v = -\lambda v \). Since \(T = \cos(c\sqrt{\lambda}t) \) and \(\sin(c\sqrt{\lambda}t) \), frequencies are \(c\sqrt{\lambda} \). We therefore want the smallest eigenvalue.
Example # 2: Fourier’s Doughnut

Problem: find fundamental (smallest) frequency for wave equation

\[u_{tt} = c^2 \Delta u \]

on an annulus \(1 < r < 2 \), subject to boundary conditions \(u(1, \theta, t) = 0 = u(2, \theta, t) \).

Recall separated solutions \(u = T(t)v(r, \theta) \) solve \(T'' = -c^2 \lambda T \) and \(\Delta v = -\lambda v \). Since \(T = \cos(c\sqrt{\lambda}t) \) and \(\sin(c\sqrt{\lambda}t) \), frequencies are \(c\sqrt{\lambda} \). We therefore want the smallest eigenvalue.

Separation \(v = \Theta(\theta)R(r) \) leads to \(\Theta = \cos(n\theta) \) and \(\sin(n\theta) \) as before. For each \(n \), \(R \) solves the Bessel equation

\[r^2 R'' + rR' + (\lambda r^2 - n^2)R = 0. \]
Example # 2: Fourier’s Doughnut

Problem: find fundamental (smallest) frequency for wave equation

\[u_{tt} = c^2 \Delta u \]

on an annulus \(1 < r < 2 \), subject to boundary conditions \(u(1, \theta, t) = 0 = u(2, \theta, t) \).

Recall separated solutions \(u = T(t)v(r, \theta) \) solve \(T'' = -c^2 \lambda T \) and \(\Delta v = -\lambda v \). Since \(T = \cos(c\sqrt{\lambda}t) \) and \(\sin(c\sqrt{\lambda}t) \), frequencies are \(c\sqrt{\lambda} \). We therefore want the smallest eigenvalue.

Separation \(v = \Theta(\theta)R(r) \) leads to \(\Theta = \cos(n\theta) \) and \(\sin(n\theta) \) as before. For each \(n \), \(R \) solves the Bessel equation

\[r^2 R'' + rR' + (\lambda r^2 - n^2)R = 0. \]

In this case, we cannot omit the solutions which are singular at the origin, so

\[R(r) = c_1 J_n(\sqrt{\lambda} r) + c_2 Y_n(\sqrt{\lambda} r) \]
Example # 2: Fourier’s Doughnut

Eigenvalues are selected by imposing boundary conditions:

\[0 = c_1 J_n(\sqrt{\lambda}) + c_2 Y_n(\sqrt{\lambda}), \quad 0 = c_1 J_n(2\sqrt{\lambda}) + c_2 Y_n(2\sqrt{\lambda}). \]
Example # 2: Fourier’s Doughnut

Eigenvalues are selected by imposing boundary conditions:

\[0 = c_1 J_n(\sqrt{\lambda}) + c_2 Y_n(\sqrt{\lambda}), \quad 0 = c_1 J_n(2\sqrt{\lambda}) + c_2 Y_n(2\sqrt{\lambda}). \]

This linear system has nonzero solutions if determinant is zero:

\[J_n(\sqrt{\lambda}) Y_n(2\sqrt{\lambda}) = J_n(2\sqrt{\lambda}) Y_n(\sqrt{\lambda}) \]

which is better written as intersection point of graphs

\[Q_n(\sqrt{\lambda}) = Q_n(2\sqrt{\lambda}), \quad Q_n(x) = \frac{J_n(x)}{Y_n(x)} \]
Example # 2: Fourier’s Doughnut

Eigenvalues are selected by imposing boundary conditions:

\[0 = c_1 J_n(\sqrt{\lambda}) + c_2 Y_n(\sqrt{\lambda}), \quad 0 = c_1 J_n(2\sqrt{\lambda}) + c_2 Y_n(2\sqrt{\lambda}). \]

This linear system has nonzero solutions if determinant is zero:

\[J_n(\sqrt{\lambda}) Y_n(2\sqrt{\lambda}) = J_n(2\sqrt{\lambda}) Y_n(\sqrt{\lambda}) \]

which is better written as intersection point of graphs

\[Q_n(\sqrt{\lambda}) = Q_n(2\sqrt{\lambda}), \quad Q_n(x) = \frac{J_n(x)}{Y_n(x)} \]

We anticipate \(n = 0 \) corresponds to smallest \(\lambda \), so plot \(Q_0(x) \) versus \(Q_0(2x) \) to find intersection:
Example #2: Fourier’s Doughnut

Eigenvalues are selected by imposing boundary conditions:

\[0 = c_1 J_n(\sqrt{\lambda}) + c_2 Y_n(\sqrt{\lambda}), \quad 0 = c_1 J_n(2\sqrt{\lambda}) + c_2 Y_n(2\sqrt{\lambda}). \]

This linear system has nonzero solutions if determinant is zero:

\[J_n(\sqrt{\lambda}) Y_n(2\sqrt{\lambda}) = J_n(2\sqrt{\lambda}) Y_n(\sqrt{\lambda}) \]

which is better written as intersection point of graphs

\[Q_n(\sqrt{\lambda}) = Q_n(2\sqrt{\lambda}), \quad Q_n(x) = \frac{J_n(x)}{Y_n(x)} \]

We anticipate \(n = 0 \) corresponds to smallest \(\lambda \), so plot \(Q_0(x) \) versus \(Q_0(2x) \) to find intersection:

Thus smallest eigenvalue is therefore \(\lambda \approx 3.4^2 \).
Consider wave equation with forcing

\[u_{tt} = c^2 \Delta u + \cos(\omega_0 t), \]

Suppose for some given domain \(\Omega \) and boundary conditions, we already know eigenfunctions \(v_k(x, y) \) and eigenvalues \(\lambda_k \), for \(k = 1, 2, 3, \ldots \). Look for particular solution which has spatial dependence expanded in eigenfunctions
Consider wave equation with forcing

\[u_{tt} = c^2 \Delta u + \cos(\omega_0 t), \]

Suppose for some given domain \(\Omega \) and boundary conditions, we already know eigenfunctions \(v_k(x, y) \) and eigenvalues \(\lambda_k \), for \(k = 1, 2, 3, \ldots \).
Consider wave equation with forcing

\[u_{tt} = c^2 \Delta u + \cos(\omega_0 t), \]

Suppose for some given domain \(\Omega \) and boundary conditions, we already know eigenfunctions \(v_k(x, y) \) and eigenvalues \(\lambda_k \), for \(k = 1, 2, 3, \ldots \).

Look for particular solution which has spatial dependence expanded in eigenfunctions

\[u_p = \cos(\omega_0 t) \sum_{k=1}^{\infty} A_k v_k(x, y) \]
Resonance in forced oscillations, cont.

Plug into equation (using the fact that $\Delta v_k = -\lambda_k v_k$) to get

$$\sum_{k=1}^{\infty} A_k (\lambda_k c^2 - \omega_0^2) v_k(x, y) = 1.$$
Plug into equation (using the fact that $\Delta v_k = -\lambda_k v_k$) to get

$$
\sum_{k=1}^{\infty} A_k (\lambda_k c^2 - \omega_0^2) v_k(x, y) = 1.
$$

Just an orthogonal expansion of eigenfunctions, so taking inner products with each eigenfunction gives

$$
A_k = \frac{1}{\lambda_k c^2 - \omega_0^2} \frac{\langle v_k, 1 \rangle}{\langle v_k, v_k \rangle}.
$$
Plug into equation (using the fact that $\Delta v_k = -\lambda_k v_k$) to get

$$\sum_{k=1}^{\infty} A_k (\lambda_k c^2 - \omega_0^2) v_k(x, y) = 1.$$

Just an orthogonal expansion of eigenfunctions, so taking inner products with each eigenfunction gives

$$A_k = \frac{1}{\lambda_k c^2 - \omega_0^2} \frac{\langle v_k, 1 \rangle}{\langle v_k, v_k \rangle}.$$

If $\omega_0 \neq c \sqrt{\lambda_k}$, then can find all A_k; but what if $\omega_0 \rightarrow \omega_K$ where $\omega_K = c \sqrt{\lambda_K}$ is one the “natural” frequencies?
Plug into equation (using the fact that $\Delta v_k = -\lambda_k v_k$) to get

$$\sum_{k=1}^{\infty} A_k(\lambda_k c^2 - \omega_0^2)v_k(x, y) = 1.$$

Just an orthogonal expansion of eigenfunctions, so taking inner products with each eigenfunction gives

$$A_k = \frac{1}{\lambda_k c^2 - \omega_0^2} \frac{\langle v_k, 1 \rangle}{\langle v_k, v_k \rangle}.$$

If $\omega_0 \neq c\sqrt{\lambda_k}$, then can find all A_k; but what if $\omega_0 \rightarrow \omega_K$ where $\omega_K = c\sqrt{\lambda_K}$ is one the “natural” frequencies?

Resonance: A system forced with an oscillation near one of its internal frequencies results in a large amplitude response.
Resonance in forced oscillations, cont.

Plug into equation (using the fact that $\Delta v_k = -\lambda_k v_k$) to get

$$\sum_{k=1}^{\infty} A_k (\lambda_k c^2 - \omega_0^2) v_k(x, y) = 1.$$

Just an orthogonal expansion of eigenfunctions, so taking inner products with each eigenfunction gives

$$A_k = \frac{1}{\lambda_k c^2 - \omega_0^2} \frac{\langle v_k, 1 \rangle}{\langle v_k, v_k \rangle}.$$

If $\omega_0 \neq c \sqrt{\lambda_k}$, then can find all A_k; but what if $\omega_0 \to \omega_K$ where $\omega_K = c \sqrt{\lambda_K}$ is one the “natural” frequencies?

Resonance: A system forced with an oscillation near one of its internal frequencies results in a large amplitude response.

In this case, this means that the particular solution is approximately

$$u_p \approx A_K \cos(\omega_0 t) v_K(x, y).$$

Resonance “picks out” eigenfunction w/ frequency near ω_0.
Resonance in forced oscillations, cont.

Resonance for a disk: Video demonstration

Resonance for a square plate: Video demonstration