1. Find an asymptotic expansion with two non-zero terms for solutions of \(\cos x = \frac{x}{\epsilon} \). Check your approximation for \(\epsilon = 0.3 \) against a numerical solution (obtained by, for example, plotting \(\cos \) against \(-x/\epsilon \)).

2. Find a three term asymptotic expansion of \(\ln(1 + e^{\epsilon^{-1}}) \) for \(\epsilon \to 0 \). Explain why it is an asymptotic series.

3. Consider \(\epsilon x^8 - \epsilon^2 x^6 + x - 2 = 0 \) for small \(\epsilon \). Investigate dominant balance by considering roots of the form \(x \sim \epsilon^{-n} \). Then find a two-term expansion for all solutions.

4. Find an expansion for the large roots of \(x \tan(x) = 1 \) by first writing as iteration \(x_{n+1} = k\pi + \tan^{-1}(1/x_n) \), where \(k \) is a large integer.

5. Let \(A, B \) be nonsingular \(n \times n \) matrices. Find a three term expansion of \((A + \epsilon B)^{-1} \) for \(\epsilon \to 0 \).
(Hint: let \(C \) be equal to the inverse so \(C(A + \epsilon B) = I \))

6. Find a two-term expansion for \(O(1) \) eigenvalues of the Sturm-Liouville problem
\[
 u''(x) + \lambda u = 0, \quad u(0) = 0, \quad u(L) = \epsilon u'(L).
\]
Explain why your answer is not valid when \(\lambda = O(\epsilon^{-2}) \) (hint: what terms are dominant in the boundary condition?)