Homework 1
Math 587

1. Find an asymptotic expansion (to several terms) of \(\ln(1 + e^{\epsilon^{-1}}) \) for \(\epsilon \to 0 \).
(Hint: factor out the dominant term inside the log first)

2. Find an asymptotic expansion with two non-zero terms for solutions of \(\cos x = x/\epsilon \). Check your approximation for \(\epsilon = 0.3 \) against a numerical solution (obtained by, for example, plotting \(\cos \) against \(-x/\epsilon \)).

3. Consider \(\epsilon x^5 - \epsilon^2 x^6 + x - 2 = 0 \) for small \(\epsilon \). Investigate dominant balance by considering roots of the form \(x \sim \epsilon^{-\alpha} \). Then find a two-term expansion for all solutions.

4. Find the large roots of \(x \tan(x) = 1 \). (Hint: write as iteration \(x_{n+1} = k \pi + \tan^{-1}(1/x_n) \) where \(k \gg 1 \) and \(\tan^{-1} \) is the principal branch).

5. Let \(A, B \) be nonsingular \(n \times n \) matrices. Find a three term expansion of \((A + \epsilon B)^{-1} \) for \(\epsilon \to 0 \).
(Hint: let \(C \) be equal to the inverse so \(C(A + \epsilon B) = I \))