Math 468 / 568 Homework #10
klin@math.arizona.edu
Spring 2010

Due Tuesday 4/13

Last revised: April 6, 2010

Instructions:

• I encourage you to work together, but you must write up your own answers.

Problems

1. HPS 3.16

2. HPS 3.21

3. Consider a Markov jump process $X(t)$ with state space $S = \{0, 1, 2, \ldots\}$ and transition probabilities

$$Q_{xy} = \begin{cases}
1, & x = 0 \text{ and } y = 1 \\
p, & x > 0 \text{ and } y = x + 1 \\
q, & x > 0 \text{ and } y = 0 \\
0, & \text{otherwise}
\end{cases}$$

Assume $0 < p < 1$, $q = 1 - p$, and $q_x > 0$ for all x.

(a) Draw the state diagram for the embedded chain. Include all transition probabilities.

(b) Is $X(t)$ irreducible? Why?

(c) Assuming $X(t)$ has a stationary distribution π, express $\pi(x)$ in terms of $\pi(0)$.

(d) Give a necessary and sufficient condition for $X(t)$ to have a stationary distribution.

(e) Let $q_x = 1/(1 + x)$ for $x = 0, 1, 2, \ldots$. Find $E_x(T_x)$.
