1. Suppose we assume that, for some natural number \(n \geq 4 \), \(n^2 \leq 2^n \).

Prove that \((n+1)^2 \leq 2^{n+1}\).

Hint: Don’t “expand” \((n+1)^2\) in the usual way (don’t “FOIL”).
Think multiplicatively. Factor: \(n + 1 = n(\ldots) \)

2. Let \(f \) be a function whose domain is the interval \([-3, 2]\) defined as follows:
For \(-3 \leq x < 2\), let \(f(x) = x^2 \). \(f(2) = 94 \).
Prove that \([1, 5]\) is a subset of \(\text{Im}(f) \).
Prove this directly and simply. DO NOT assume you know what the image of \(f \) is for this particular case. Prove using the definition of image and the standard way of proving that one set is a subset of another.